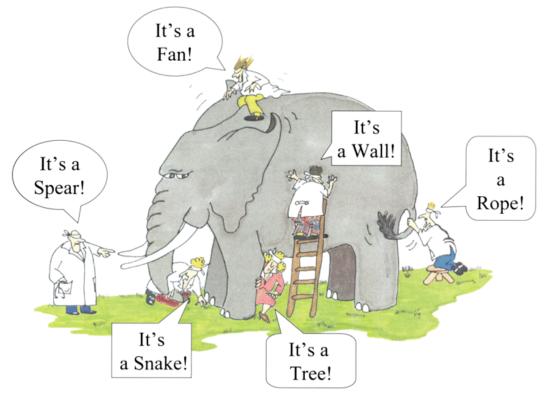
Blind Men and an Elephant: Perspectives on BigData



Chris Douglas, Carlo Curino

Microsoft Cloud and Information Services Lab

>whoami

Research Engineer, Cloud and Information Services Lab (CISL)

Apache

Chair, Apache Hadoop PMC

>id curino

Scientist, Cloud and Information Services Lab (CISL)

Apache

Committer, Apache Hadoop

Goals and Disclaimers

Goal

Understand the context (History)

Familiarize with the ecosystem (Taxonomy and key insights)

Learn to contribute (OSS—industry—Research interactions)

Classical Disclaimers

Not exhaustive or unbiased

Liberally borrowed slides from others

If I talk about your system, I expect you to stick up for it

History

Those who fail to learn from history are still gainfully employed

BigData in the Database World

OLAP data warehouses

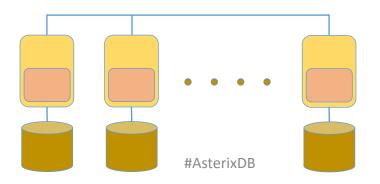
Store and query historical business data

1980's: Parallel database systems based on "shared-nothing" architectures (Gamma/GRACE, Teradata)

2000's: Netezza, Aster Data, DATAllegro, Greenplum, Vertica, ParAccel

OLTP

1980's: Tandem's NonStop SQL system



Web Crawl

Data

Bulk, append only Massive (multi-PiB)

Unstructured

Query

Days, weeks to process

Mostly full scans

Procedural computation

Hardware

Thousands of machines
Consumer grade

The origin

- Purpose-built technology
- Within large web companies
- Well targeted mission (process webcrawl)
- > scale and fault tolerance

Google File System + MapReduce (2003/2004)

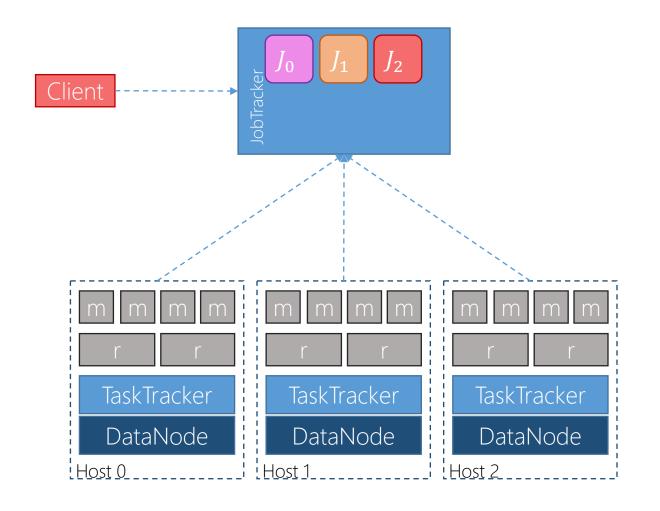
Open-source and parallel efforts

Yahoo! adopts Hadoop ecosystem HDFS + MapReduce (2006)

Microsoft Scope/Cosmos (2008) (more than MapReduce)

MapReduce (Hadoop 1.x)

Central Job/Resource coordinator
Workers collocated with data
Optimized for full scans
Automatic parallelism



Why are we talking about Hadoop?

Growth

Access, access, access...

All the data sit in the DFS

Trivial to use massive compute power

→ lots of new applications

Cast any computation as map-only job

MPI, graph processing, streaming, launching web-servers!?!

Data Lake

Everybody wants BigData

Insight from raw data is cool

Hadoop as catch-all BigData solution (and cluster manager)

Even for Small Data

Queries over samples

Exploratory analysis

Shortcomings of first-gen BigData

Programming model rigidity

map/reduce operators not expressive enough

High-level languages over MR limited

Efficiency

Batch oriented, high latency

Scale and fault tolerance over performance

Hadoop implementation limitations

Map vs Reduce slots lead to *low cluster utilization* (~70%)

Bottleneck for resource allocation

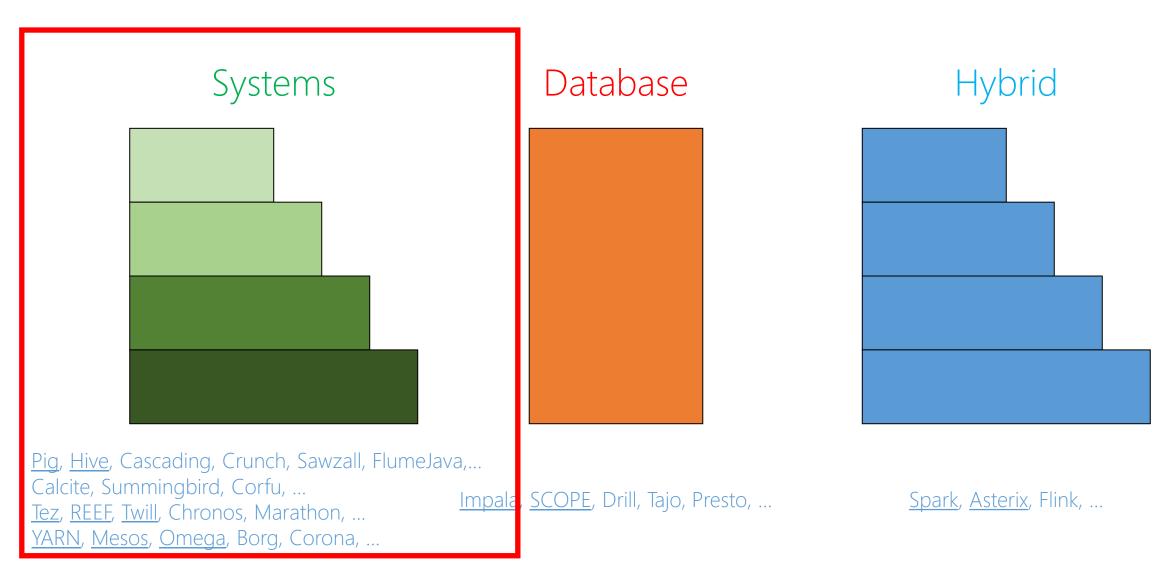
Single points of failure

BigData next generation

We all agree it should be fixed

Papers, blog posts, startups... we get it

BigData second generation



Systems: Cluster OS

"The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise." --Dijkstra

Systems: Cluster OS

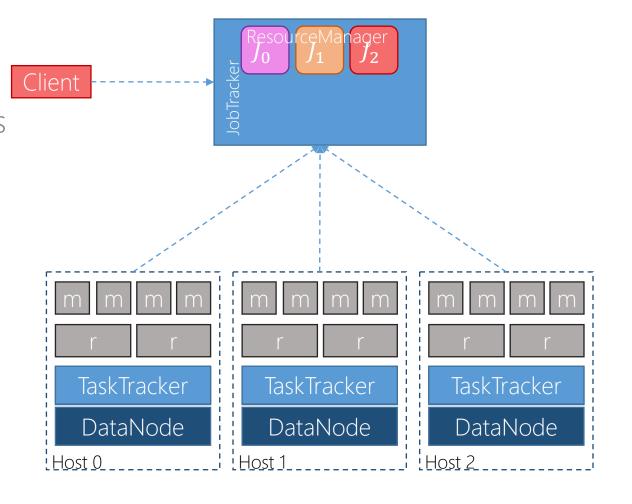
Apache Hadoop YARN (2011, SoCC13)*
Request-based central scheduler
Apache Mesos (2009, NSDI11)*
Offer-based, two-level scheduler
Google Omega (2013, EuroSys13)*
Shared-state, two-level scheduler

Apache Hadoop YARN

Central ResourceManager (RM)

Enforces sharing policies across tenants

Matches available rsrc to pending requests



YARN Container Lifecycle

Central ResourceManager

Enforces sharing policies across tenants

Matches available rsrc to pending requests

Users submit Applications

ApplicationMaster (AM) control process

AMs request Containers

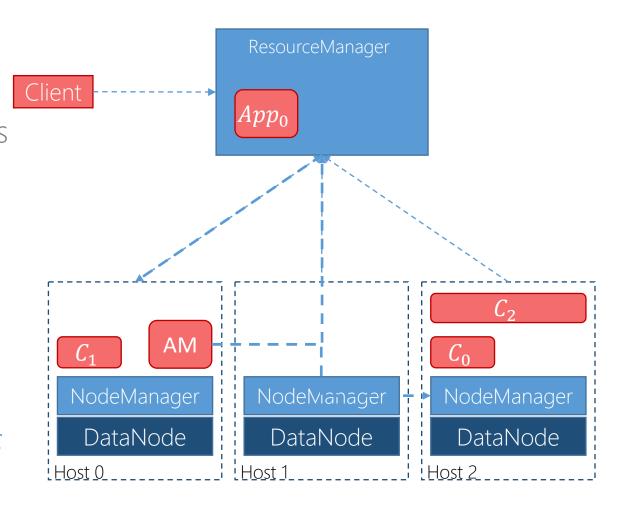
ResourceRequest encodes constraints

AM binds to a process desc on receipt

Containers started by NodeManagers

Enforces isolation between processes

Monitoring, reporting for containers



YARN ResourceRequest

Hard constraints

Memory, CPU cores, [network], [disk] Affinity, anti-affinity

Node labels (opaque)

e.g., Public-facing IP, processor architecture, OS

Soft constraints

Locality

Why does this matter?

Flexibility, Performance and Availability

Multiple Programming Models

Central components do less → scale better

Easier High-Availability (e.g., RM vs AM)

System	Jobs/Day	Tasks/Day	Cores pegged
Hadoop 1.0	77k	4M	3.2
YARN	125k (150k)	12M (15M)	6 (10)

Anything else?

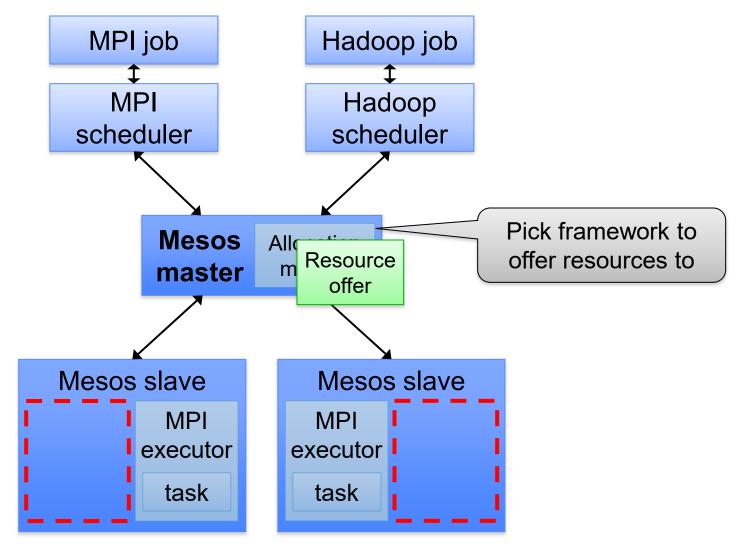
Anything else?

Maintenance, Upgrades, and Experimentation

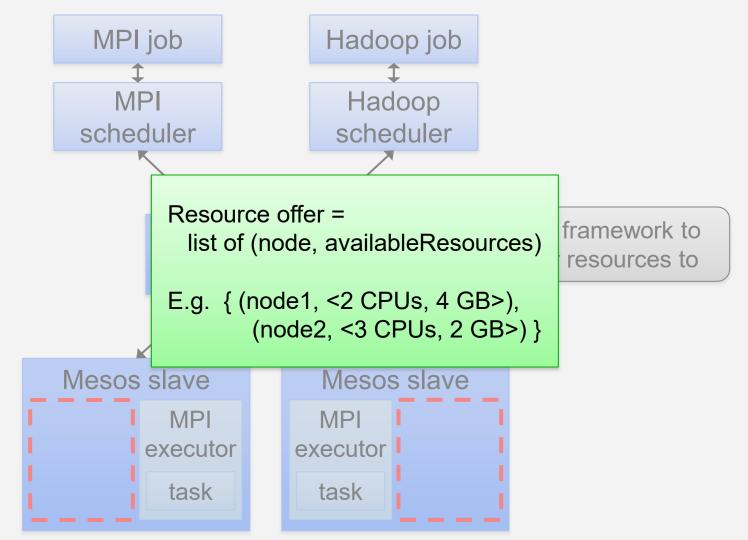
Run with multiple framework versions (at one time)

Trying out a new idea is as simple as launching a job

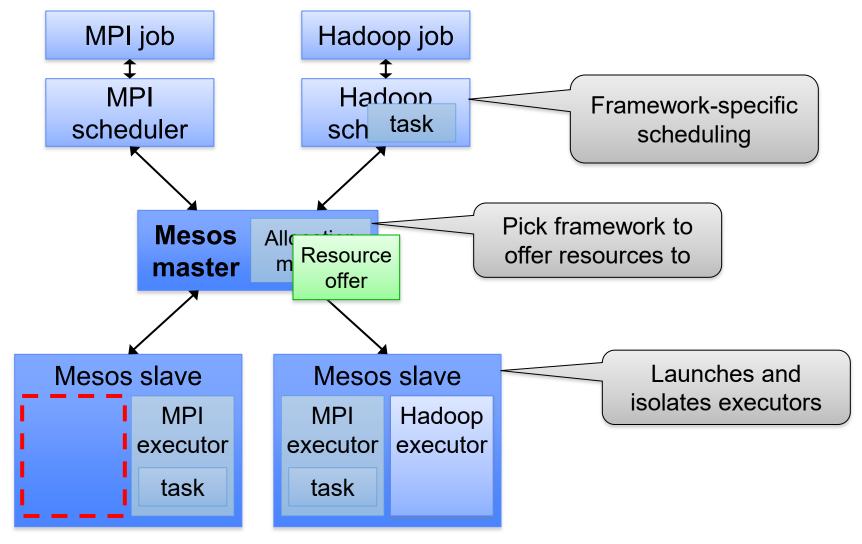
Mesos Architecture



Mesos Architecture



Mesos Architecture



Apache Mesos

Framework offers

Arbitrates among services

Services have their own models for tenants

Supports authentication plugins (working on Kerberos)

Preemption ("inverse offers") in progress

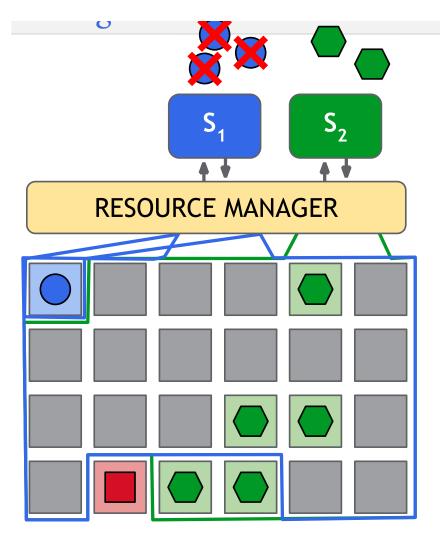
Supports resource isolation using cgroups

CPU/memory/disk iops/disk usage

Scalable

Largest single-cluster deployments in "high thousands" of nodes Tens of thousands of tasks (framework workers), tested to 50K

Omega critique of Mesos



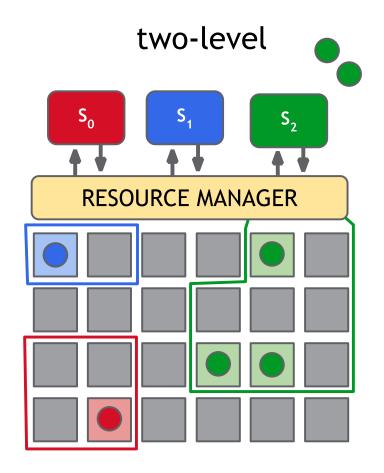
- 1. Green receives offer of all available resources.
- 2. Blue's task finishes.
- 3. Blue receives tiny offer.
- 4. Blue cannot use it.

[repeat many times]

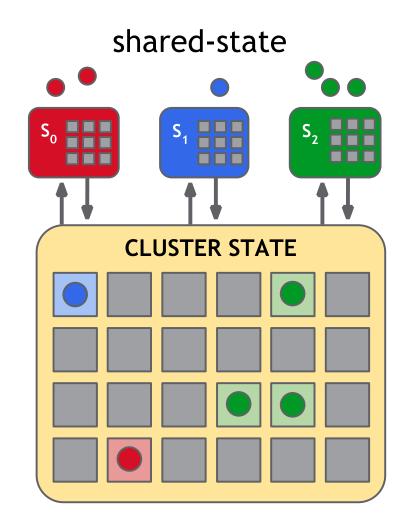
- 5. Green finishes scheduling.
- 6. Blue receives large offer.

By now, it has given up.

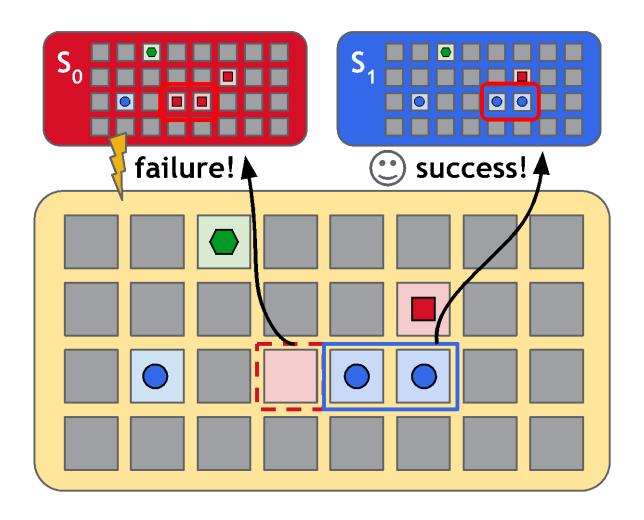
Omega



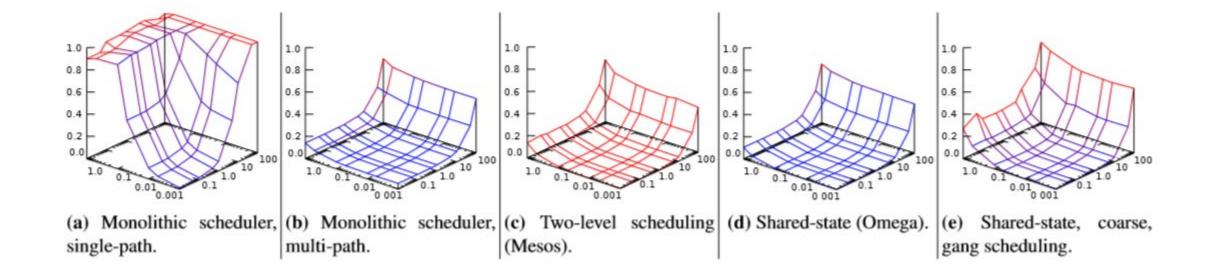
- hoarding
- information hiding



Omega



Simulation Results



Summarizing

YARN

Organized by tenant/application

Enforces global invariants (user/job/queue)

Request constraints matched against available resources

Mesos/Omega

Organized by framework/service

Multi-tenancy managed at second tier

Priority managed cooperatively across frameworks

Systems: Libraries

"Although correct, it hurts me, for I don't like to crack an egg with a sledgehammer, no matter how effective the sledgehammer is for doing so." --Dijkstra

Building on the Cluster OS

Repeated, necessary work

Communication

Configuration

Data/Control flow

Error handling/Fault tolerance

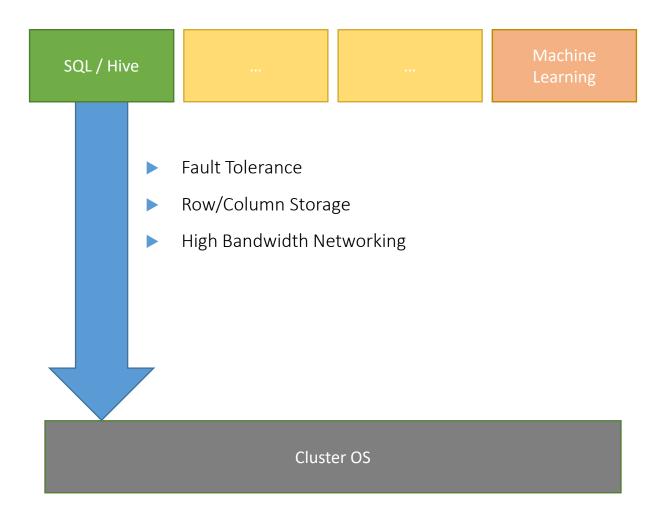
Cross-platform

Common "better than Hadoop" tricks

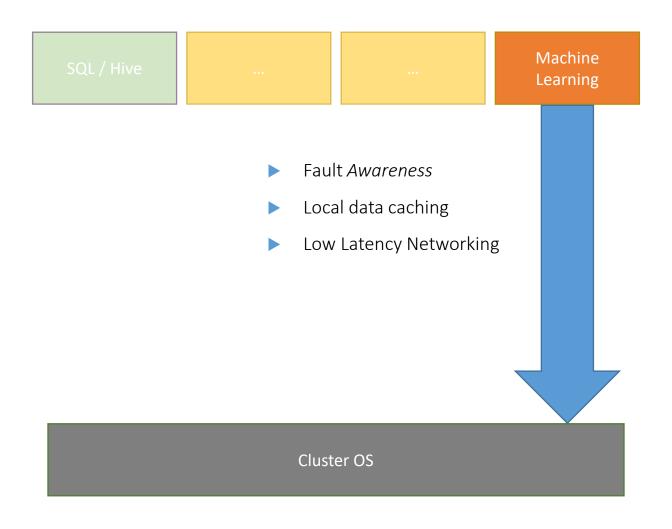
Amortize scheduling overhead

Avoid (re)materializing data (pipelining, caching)

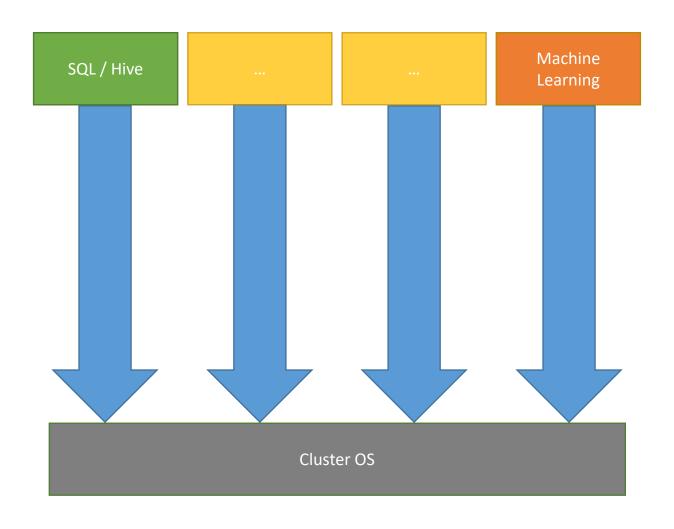
The Challenge



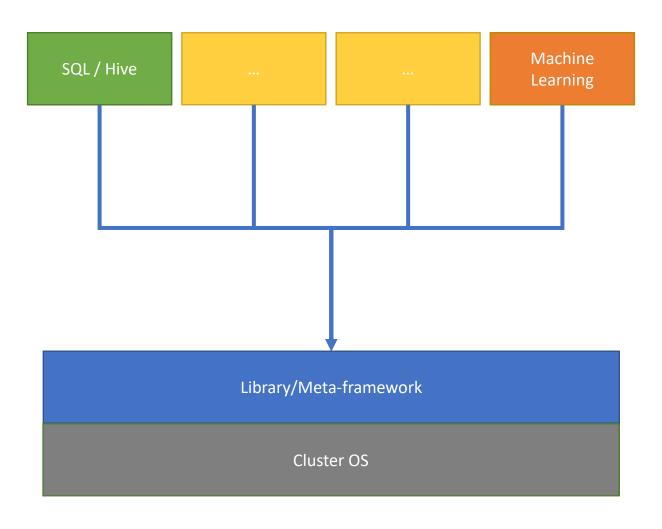
The Challenge



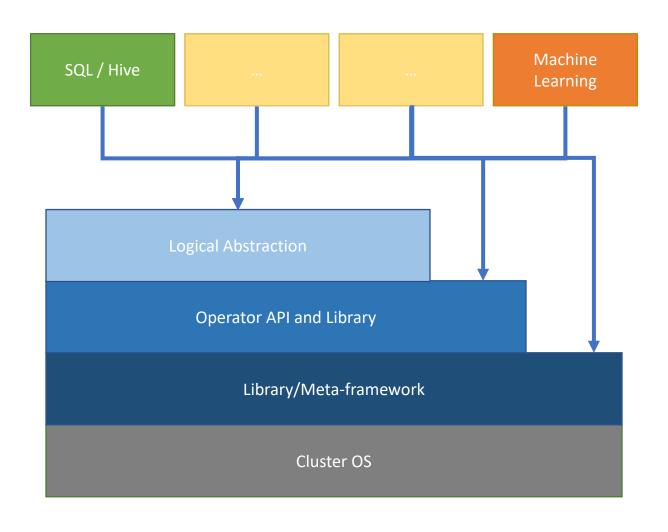
The Challenge



Library Stack



Library Stack



Systems: Libraries

Services: Apache Slider, Marathon, Chronos

Deploy existing applications

Apache Twill (incubating) (2013)

Thread-oriented abstraction on YARN

Apache REEF (incubating) (2014, VLDB14, SIGMOD15)

Event-driven control plane for decentralized dataflows

Apache Tez (2013, SIGMOD15)

Dryad-inspired DAG scheduler for Hive/Pig/Cascading

Services in shared clusters

YARN

Slider

Start a service on YARN

Lifecycle management

Discovery

Oozie

Workflow manager

Submits workflows to YARN

Mesos

Marathon

"init" for datacenter

Long-running services

Chronos

"cron" for datacenter

Apache Twill (incubating)

Familiar thread model (java.util.concurrent)

Features

Real-time logging

Command messages

Service Registry

Elastic Resource

```
public class HelloWorld {
   static Logger LOG = LoggerFactory.getLogger(HelloWorld.class);
   static class HW extends AbstractTwillRunnable {
      @Override
      public void run() {
         LOG.info("Hello World");
      }
   }
   public static void main(String[] args) throws Exception {
      YarnConfiguration conf = new YarnConfiguration();
      TwillRunnerService runner =
          new YarnTwillRunnerService(conf, "localhost:2181");
      runner.startAndWait();
      TwillController controller = runner.prepare(new HW()).start();
      Services.getCompletionFuture(controller).get();
   }
}
```


Apache REEF

Intuition

Provide a "stdlib for BigData" distributed applications

Modular design (application diversity)

Support multiple resource managers (YARN, Mesos, processes, VMs)

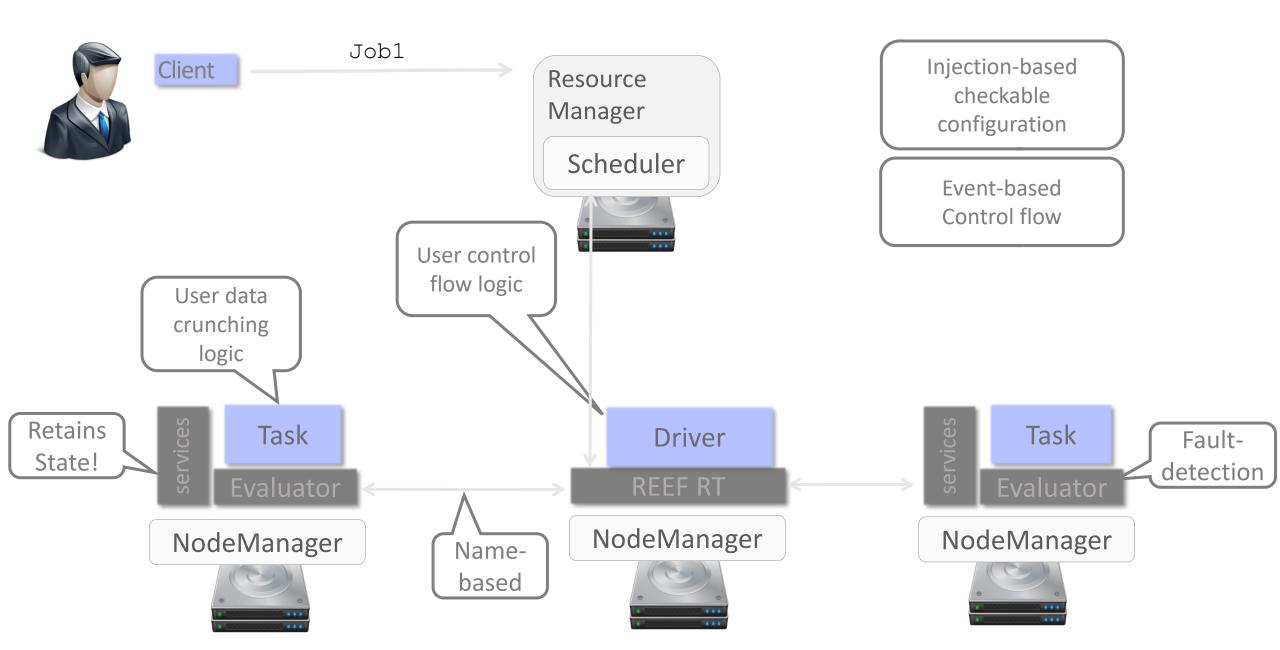
Core REEF

Control flow pattern centralized, event-driven "driver", and distributed "evaluators" Separate the notion of task from evaluator (enables container re-use)

REEF Services

Data caching in evaluator, Naming and Communications, Coordination and Consistent Logging, Configuration validation, etc..

REEF



Libraries

Wake

Networking abstraction

Event-based programming/remoting

Static checking of event flows

Aggressive JVM event inlining

Static subset of Rx

Tang

Configuration as dependency injection

Corfu

Currently deployable as a service using REEF Integration as a service to applications for distributed data structures

Apache REEF Summary

Control Flow is centralized in the Driver

Evaluator, Tasks configuration and launch

Error Handling is centralized in the Driver

All exceptions are forwarded to the Driver

All APIs are asynchronous

Caching / Checkpointing / Group communication

Example Apps Running on REEF

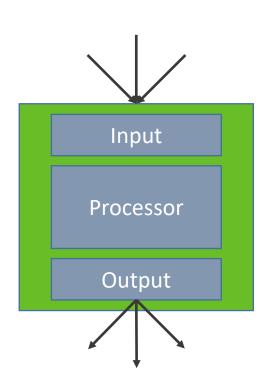
MR, Asynch Page Rank, ML regressions, PCA, distributed shell, Azure Streaming Analytics,...

Cross-platform, multi-language

YARN, Mesos

Java, .NET

Apache Tez



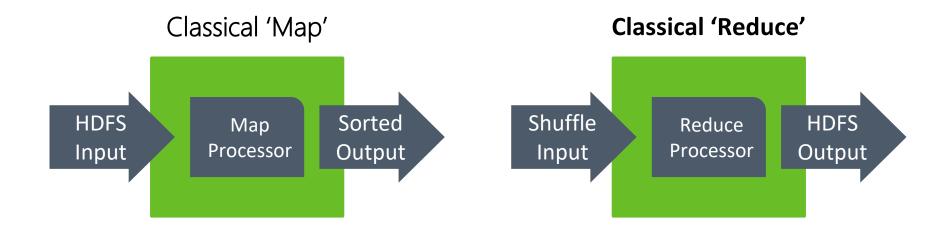
DAG API

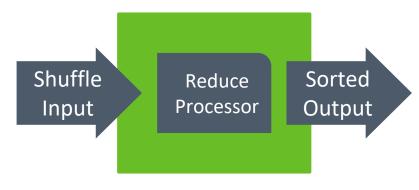
- Defines the structure of the data processing and the relationship between producers and consumers
- Defines complex data flow pipelines using simple graph connection APIs. Tez expands the logical DAG at runtime

Runtime API

- Defines the interfaces using which the framework and app code interact with each other
- App code transforms data and moves it between tasks

Library of Inputs and Outputs





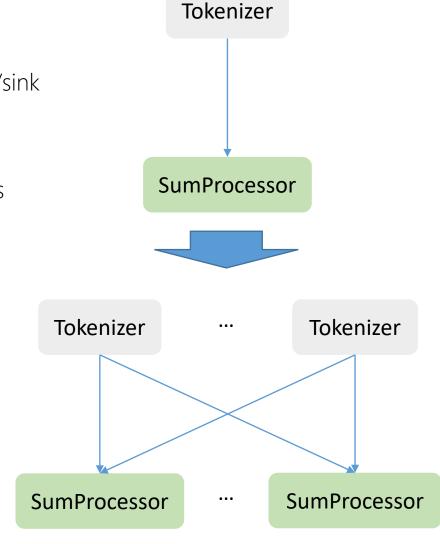
Intermediate 'Reduce' for Map-Reduce-Reduce

What is built in?

- Hadoop InputFormat/OutputFormat
- SortedGroupedPartitioned Key-Value Input/Output
- UnsortedGroupedPartitioned Key-Value Input/Output
- Key-Value Input/Output

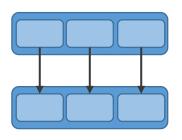
WordCount

```
DataSourceDescriptor dataSource = /* specify input data */
                                                                          Define source/sink
                                /* specify output location */
DataSinkDescriptor dataSink =
// create vertices
Vertex tokenvertex = Vertex.create(...).addDataSource(INPUT, dataSource);
                                                                           Define vertices
Vertex sumvertex = Vertex.create(...).addDataSink(OUTPUT, dataSink);
// create edge
                                                                        Define edges
EdgeProperty edge = /* Inititialize Edge with Hash partitioner */
                                                                                                   Tokenizer
DAG dag = DAG.create("WordCount");
dag.addVertex(tokenizerVertex)
                                                                          Wireup
   .addVertex(summationVertex)
   .addEdge(Edge.create(tokenvertex, sumvertex, edge);
```



Slide courtesy of Hortonworks

Edge Types

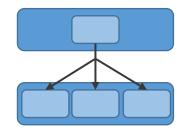


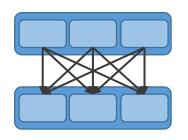
One-To-One

Data from producer *i* routes to consumer *i*

Broadcast

Data from producer routes to all consumer tasks





Scatter-Gather

Producers partition data into shards. Shard *i* from all producers routes to consumer *i*

Systems: libraries

Different surface from each library

Tez DAG exec, storage libraries, coordination, YARN-only **REEF** stdlib, difficult plumbing for distrib apps, cross-platform **Slider** service discovery, gradually expose YARN surface **Marathon/Chronos** treat services in datacenter as daemons

Service as a Service

Apache Myriad (incubating) project runs YARN as a Mesos service

MapReduce is a library

In both YARN and Mesos, MapReduce is library code Though deployment is different

Systems: Applications

"So... what would you say you DO here?"

Apache Pig

Procedural dataflow language

Earlier versions omit control flow, modularity features (loops, funcs, branches)

Rich support for UDFs, Macros (DEFINE, IMPORT)

Builtin Functions (load/stor, eval, relational, math, string, datetime, arithmetic)

Supports multiple execution engines

Tez, MapReduce

Rule-based optimizer

Safe transformations (push-up filter, push-down flatten, pruning, etc.)

Interactive mode

"Grunt" shell for interactive analysis

Explore samples of data

Sample PigLatin Queries

Query 1: Get the list of web pages visited by users whose age is between 20 and 29 years.

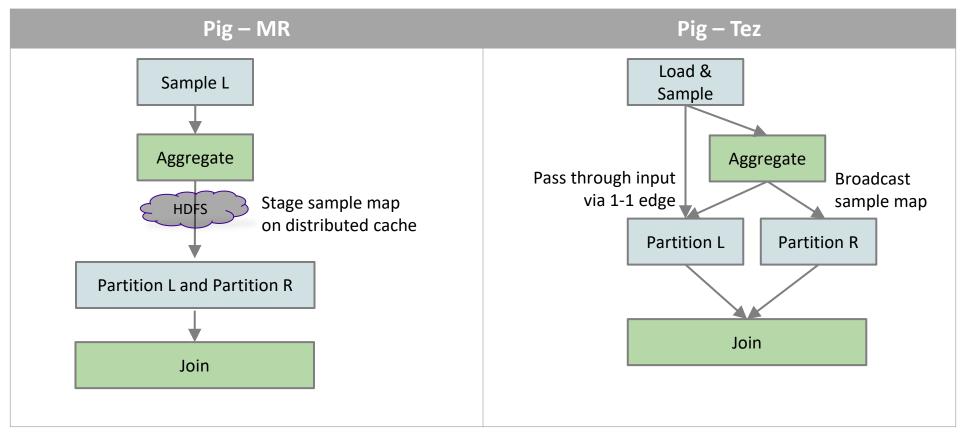
```
USERS = load 'users' as (uid, age);
USERS_20s = filter USERS by age >= 20 and age <= 29;
PVs = load 'pages' as (url, uid, timestamp);
PVs_u20s = join USERS_20s by uid, PVs by uid;</pre>
```

Query 2: PageRank

```
SQL SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 106
```


Example: Pig Skewed Join

```
I = LOAD 'left' AS (x, y);
r = LOAD 'right' AS (x, z);
j = JOIN I BY x, r BY x
USING 'skewed';
```



Apache Hive

Users write a variant of SQL (HiveQL)

Used by projects that may not use the Hive engine Interactive shell (Beeline)

HiveServer2 (metaserver)

Stores schema, statistics; coordinates transactions Used by other frameworks (e.g., MapReduce, Pig)

ACID transactions

INSERT, UPDATE, DELETE
Only for bucketed tables in ORC format
No BEGIN, COMMIT, ROLLBACK
Snapshot-level isolation
Streaming ingest

HiveQL						
Hive Engine						
MapReduce	Tez	Spark				

Stinger Initiative

Vectorized Query Execution

Process blocks of rows at a time

Very few function calls/conditional branches in inner loop

Set of known types, subset of built-in func and UDFs

Optimized Record Columnar File (ORCFile)

Replaces Hive RCFile

Efficient integer transcoding, zigzag encoding, run-length encoding (RLE), etc.

Support for push-down predicates using lightweight indexes

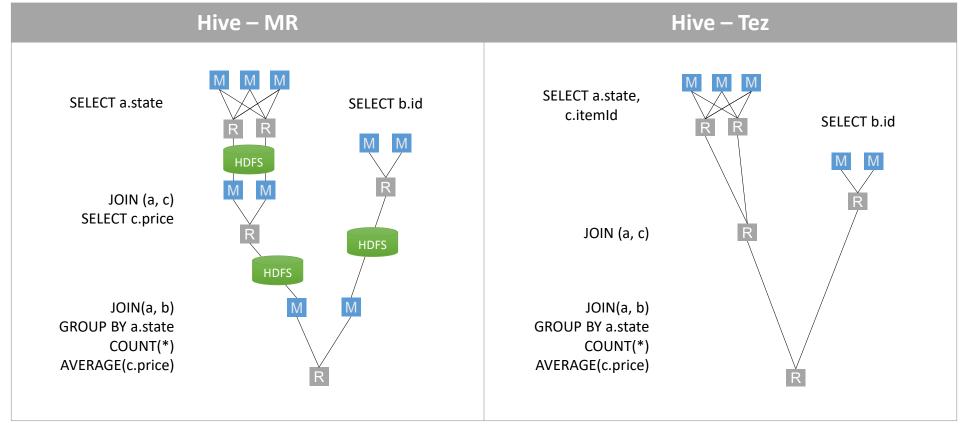
Metadata statistics can be used to answer queries, avoid decompression

Additional compression can significantly decrease storage costs

Hive-on-MR vs. Hive-on-Tez

SELECT a.x, AVERAGE(b.y) AS avg
 FROM a JOIN b ON (a.id = b.id) GROUP BY a
UNION SELECT x, AVERAGE(y) AS AVG
 FROM c GROUP BY x
ORDER BY AVG;

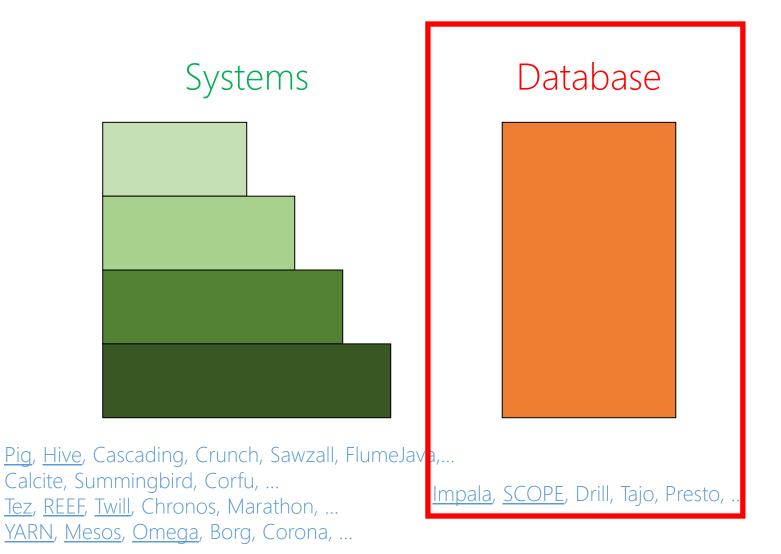
Tez avoids unneeded writes to HDFS

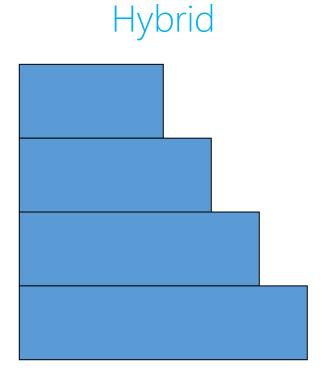


Large application ecosystem

Dryad DAG computations Storm stream processing Giraph graph-processing, Bulk Synchronous Parallel (Pregel) Flink (Stratosphere) parallel, iterative computations Crunch library for MapReduce/Spark pipelines Hama bulk-synchronous parallel MRQL SQL-like query language over MapReduce, Hama, Spark Spark interactive, in-memory, iterative Drill low-latency, SQL query engine Impala (Llama) scalable, interactive, SQL-like query

BigData second generation





Spark, Asterix, Flink, ...

Database approach

"...and in the darkness bind them."

Cloudera Impala

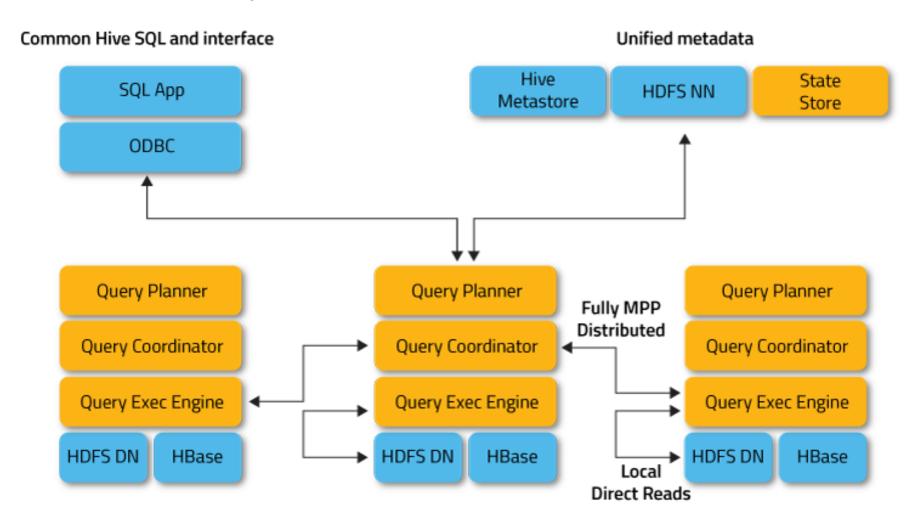
MPP Analytic Query Engine

- Inspired by Google Dremel
- Interactive workloads (lower latency, sometimes by orders of magnitude)
- Restricted SQL language (only fast operations)
- Support for scalar UDFs, user-defined aggregates (UDA)
- Support for low-level optimizations (e.g., code generation in LLVM)

Deep integration with Hadoop

- Data in HDFS/HBase, support common formats (Parquet, Avro, text, Seq, RC)
- Pin data in memory (HDFS feature)
- Daemons co-located with HDFS DataNodes
- Kerberos/LDAP authorization
- Apache Sentry (role-based auth) integration

Cloudera Impala Architecture



Cloudera Impala Performance

Key technical tricks

Vertical integration (no MR)

Intra-framework multi-tenancy

YARN integration via Llama

C++ and LLVM code generation

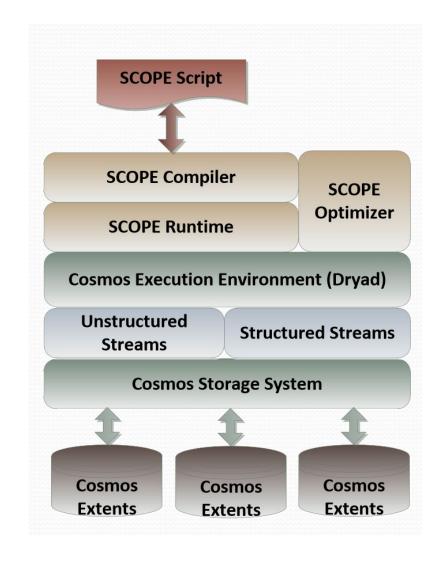
Read-only data (no transactions)

Lightweight fault-tolerance

Microsoft Scope / Apollo

Integrated vertical stack

- SQL-like language well integrated in .NET
- Powerful optimizer
- Dryad runtime
- Integrated scalable job scheduler
- Filesystem co-designed



Cloud Scale Job

- The job query plan is represented as a DAG
- Tasks are the basic unit of computation
- —Tasks are grouped in Stages
- Execution is driven by a scheduler

Job sample: SCOPE (VLDBJ, 2012)

SELECT

AVG(DateTime.Parse(latency))
AS E2ELatency,

market

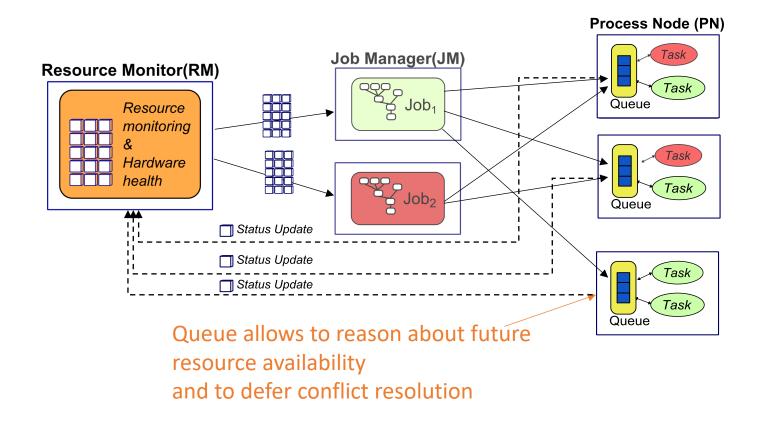
FROM

QueryLatencies

GROUP BY market



Apollo Distributed Scheduler



Apollo Distributed Scheduler

Initial task placement

Wait-time matrix

Computes expected wait time for a given size

Speculative Execution

Schedules duplicate exec given new information

Opportunistic back-filling

Distributed scheduling requires static capacity allocation Opportunistically borrow unused resources (low-pri tasks)

→ Memory							
1		4GB	8GB	12GB	16GB		
CPU	2 core	0	10	10	16		
	4 core	0	10	10	16		
	6 core	5	10	10	16		
	8 core	10	15	15	25		

Wait-time matrix (seconds)

Systems/Database

<u>Systems</u>

Pro

OSS friendly (modular)
Competitive (at each level)
Agile (experimentation)

Con

Prevents vertical integration Modularity often overstated

<u>Database</u>

Pro

Vertical integration

Scalability

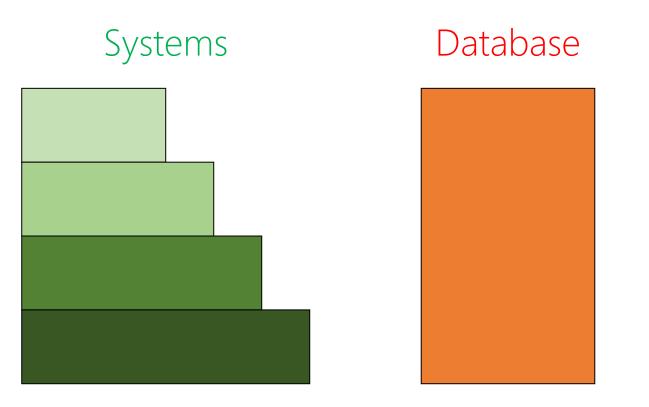
System-wide changes possible

Con

Rigid model

Trade diversity for utilization

BigData second generation

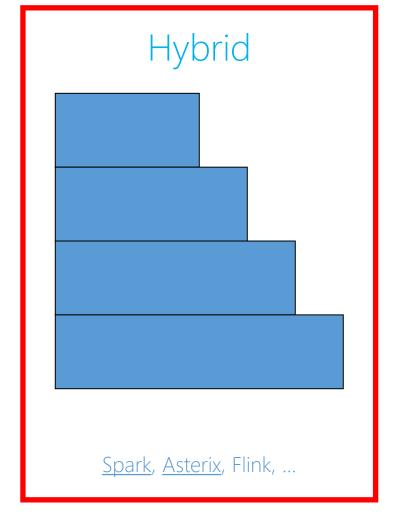


Pig, Hive, Cascading, Crunch, Sawzall, FlumeJava,...

Calcite, Summingbird, Corfu, ...

Iez, REEF, Twill, Chronos, Marathon, ...

YARN, Mesos, Omega, Borg, Corona, ...



Hybrid

Layered, like an onion

Apache Spark

Originally built for iterative workloads

Machine learning jobs

Cache data in reusable containers

Resilent Distributed Datasets (RDD)

Immutable, partitioned collection of objects
Partitions, dependencies, compute, [partitioner], [locality]

May have a schema (SchemaRDD/DataFrames)

DSL

Originally in Scala, has python, Java bindings

Transformations are closed over RDDs

Actions force eval of transformations to return output

Spark SQL Relational operators

MLLib machine learning GraphX Graph processing Spark Streaming real-time

Spark Runtime

Cluster Managers

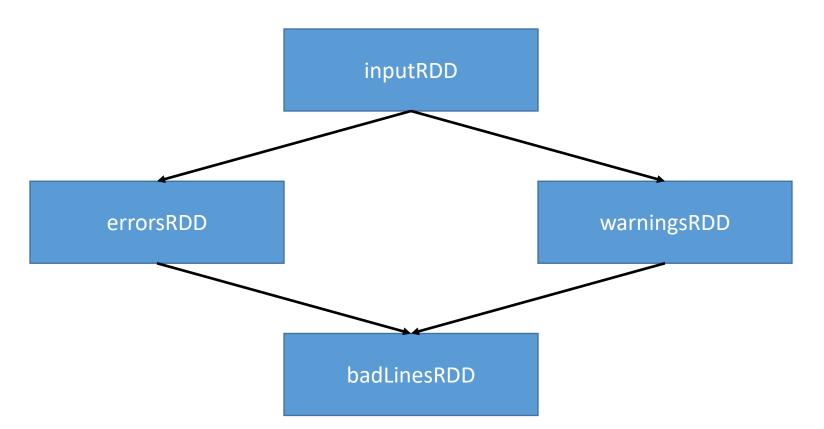
YARN, Mesos, AWS

Data Sources

HDFS, S3, Cassandra, Hana

Example Transformation (Scala)

```
val inputRDD = sc.textFile("log.txt")
val errorsRDD = inputRDD.filter(lambda x: "error" in x)
val warningsRDD = inputRDD.filter(lambda x: "warning" in x)
val badLinesRDD = errorsRDD.union(warningsRDD)
```



Example Actions

```
// ...
val badLinesRDD = errorsRDD.union(warningsRDD)
println("Input had " + badLines.count() + " concerning lines")
println("Here are 10 examples: ")
badLines.take(10).foreach(println)
badLines.saveAsSequenceFile("/home/cdoug/badLines")
```

Action forces evaluation of RDD

RDD not a dataset, but instructions for computing dataset May be persisted by user request or high-level framework Faults automatically recoverable from lineage Operations automatically chained/combined Partitioning encoded in framework

Mixing SparkSQL and MLlib

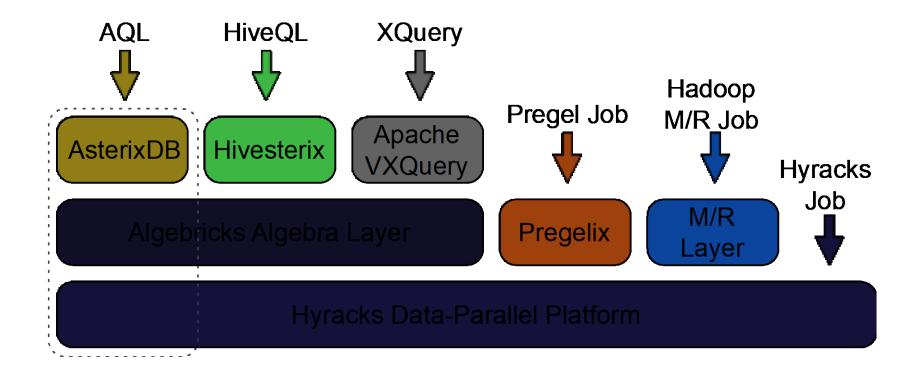
```
training_data_table = sql("""
    SELECT e.action, u.age, u.latitude, u.logitude
    FROM Users u
    JOIN Events e ON u.userId = e.userId""")

def featurize(u):
    LabeledPoint(u.action, [u.age, u.latitude, u.longitude])

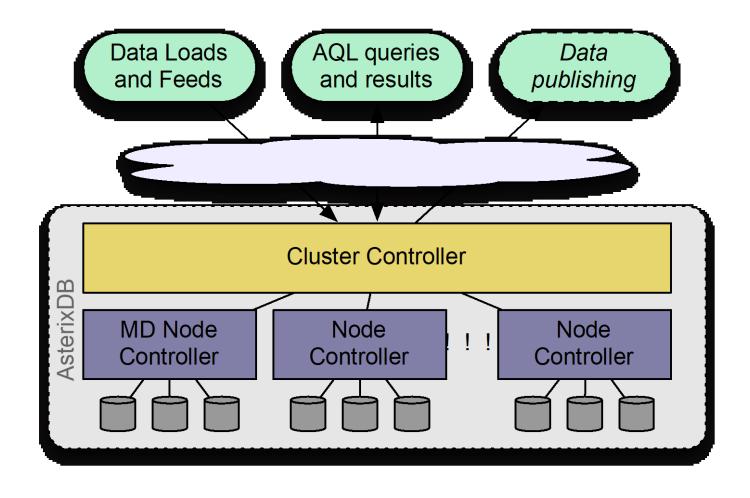
// SQL results are RDDs so can be used directly in MLlib.
training_data = training_data_table.map(featurize)

model = new LogisticRegressionWithSGD.train(training_data)
```

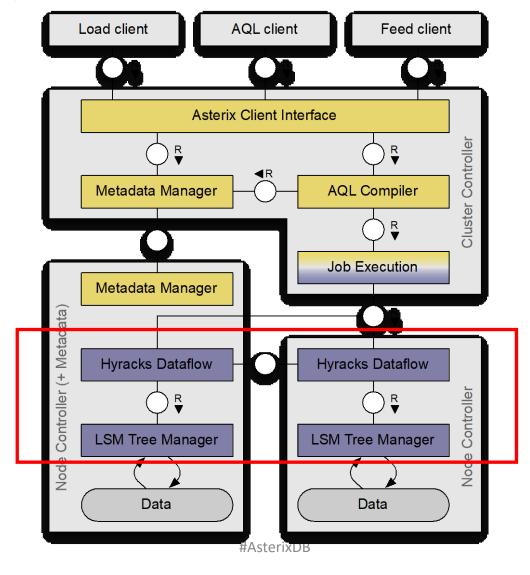

Asterix Stack



AsterixDB System Overview



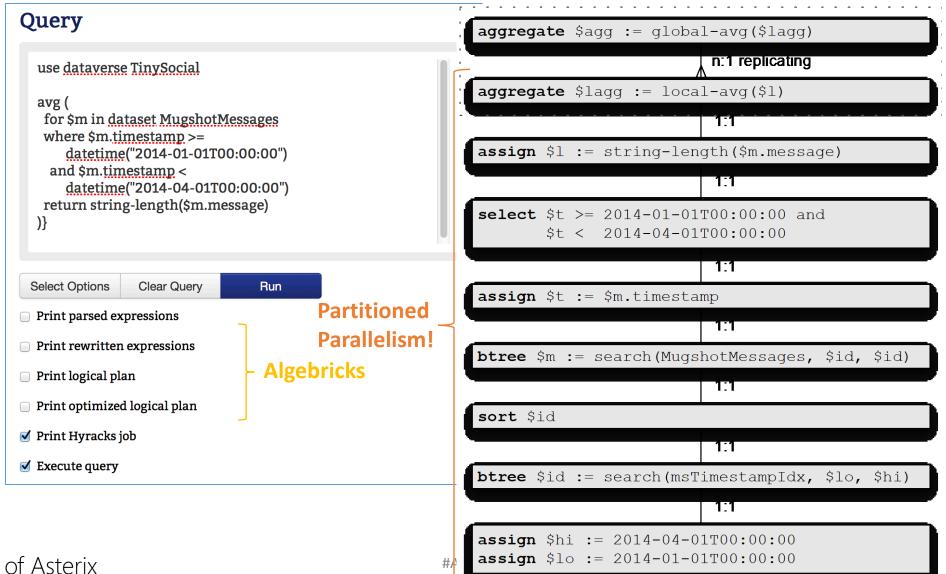
AsterixDB System Overview (cont.)



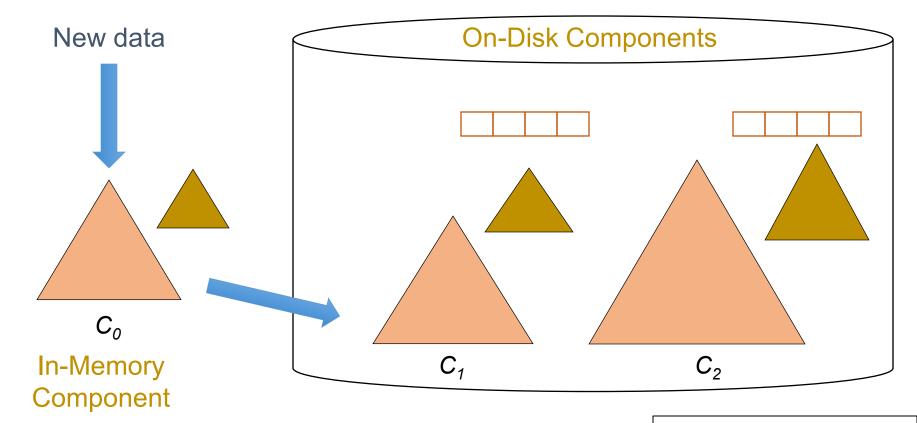
Hyracks Runtime

- Partitioned-parallel platform for data-intensive computing
- Job = dataflow DAG of operators and connectors
 - Operators consume and produce partitions of data
 - Connectors route (repartition) data between operators
- Hyracks vs. the "competition"
 - Based on time-tested parallel database principles
 - vs. Hadoop: More flexible model and less "pessimistic"
 - vs. Dryad: Supports data as a first-class citizen
- Scale-tested on a Yahoo! Labs cluster with 180 nodes (1440 cores, 720 disks)

Hyracks (cont.)



LSM-Based Storage & Indexes



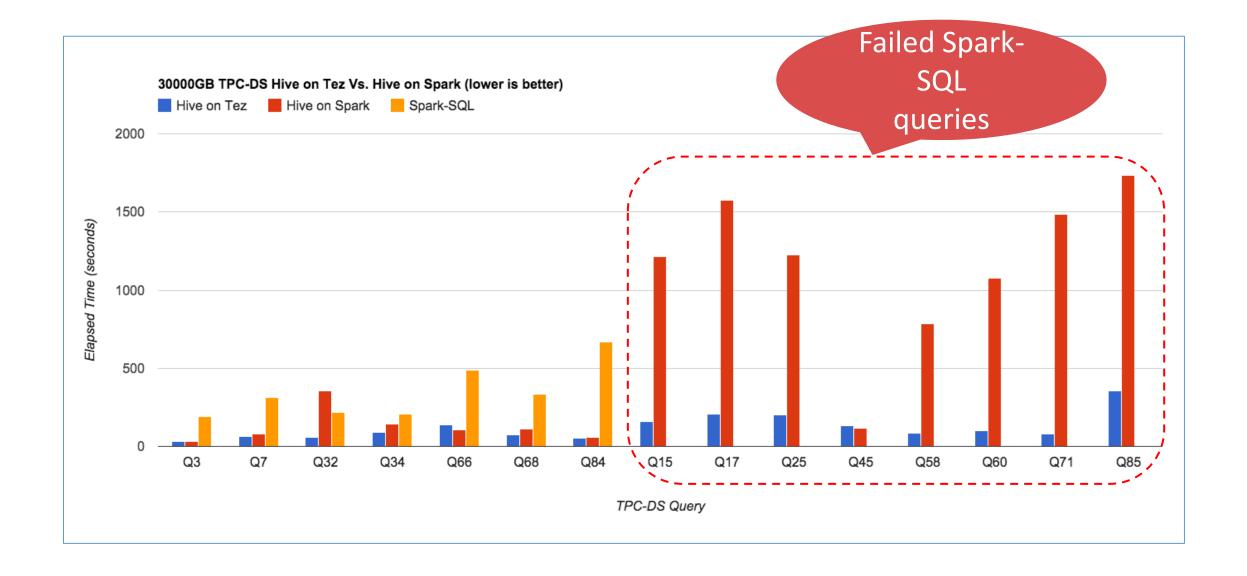
LSM-ified Indexes:

- B+ trees
- R trees (secondary)
- Inverted (secondary)

Benchmarks and Performance

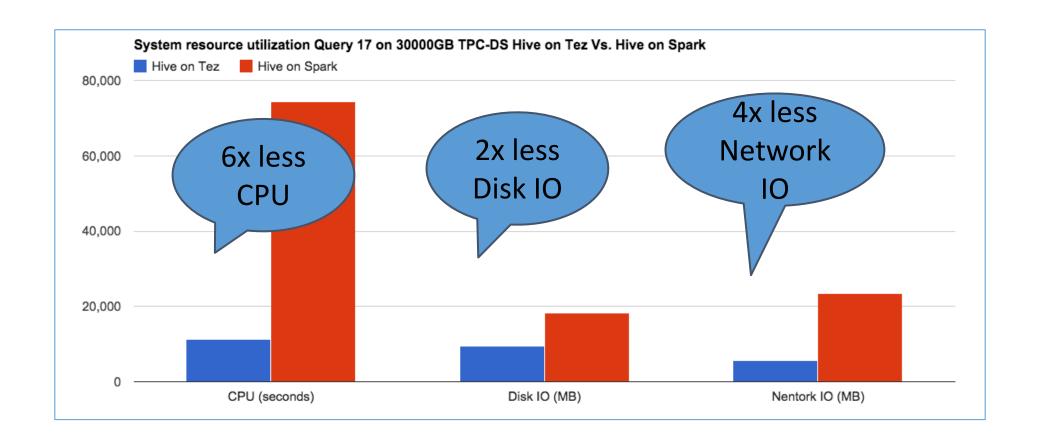
"What is best in life?"

Performance comparison: TPC-DS 30TB continued



Why didn't Spark take Hive to sub-second?

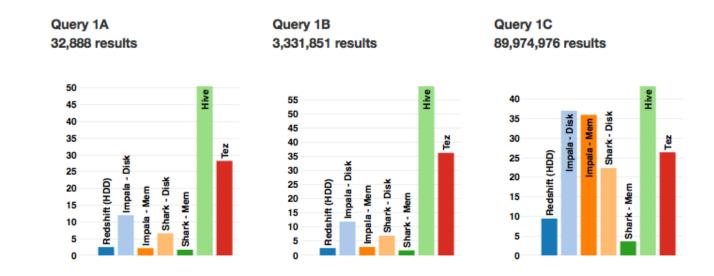
- Hive is CPU bound for most operations specially after the introduction of columnar file formats (do more with less)
- Spark consumes more CPU, Disk & Network IO than Tez for relatively large datasets
- Hive on Spark spends a lot of time translating from RDDs to Hive's "Row Containers"

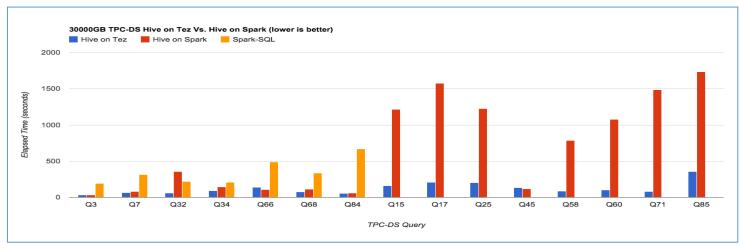


Impala vs Spark vs Hive/Tez



Single User versus 10 Users Response Time/Impala Times Faster Than





OSS – Industry – Research

Best Frenemies Forever

Competition

Research

Limited scope to demonstrate changes Low cost for testing prototypes

Industry

Access to talent, tools beyond
Ability to influence ecosystem
Easy collaboration across companies

OSS

"Safe harbor"

IP protections (Apache Software Foundation)

Questions?

Microsoft Cloud and Information Services Lab (CISL)

Systems Group

Apache Hadoop YARN: Yet Another Resource Negotiator (SoCC 2013)

Tango: Distributed data structures over a shared log (SOSP 2013)

Reservation-based Scheduling: If You're Late Don't Blame Us! (SoCC 2014)

Multi-resource packing for cluster schedulers (SIGCOMM 2014)

REEF: Retainable Evaluator Execution Framework (SIGMOD 2015)

WANalytics: Analytics for a Geo-Distributed Data-Intensive World (CIDR 2015)

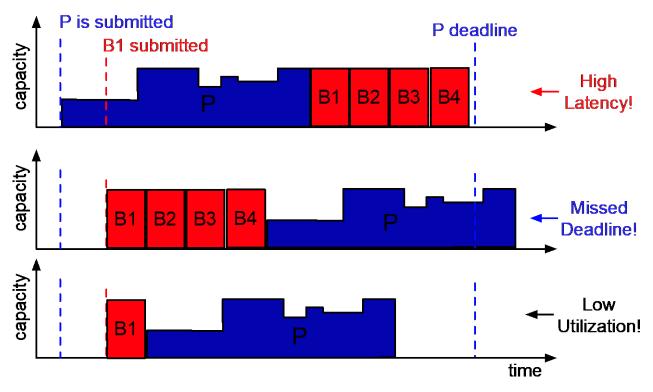
Global analytics in the face of bandwidth and regulatory constraints (NSDI 2015)

Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters (tech report)

Chris Douglas

<u>cdoug@microsoft.com</u>, <u>cdouglas@apache.org</u>, @chris_douglas

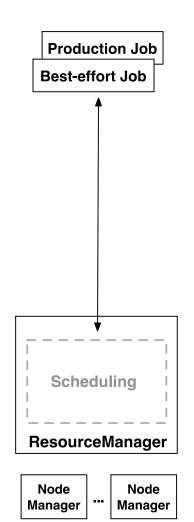
What are my options...

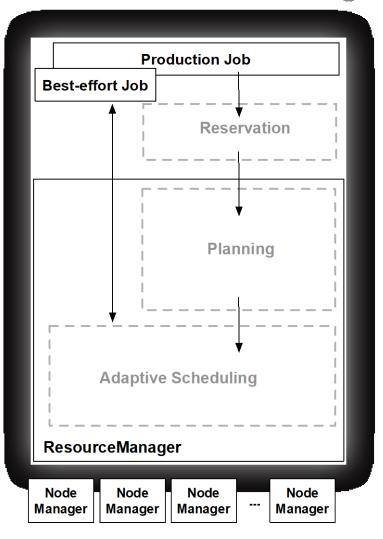


XXXX ffixme

Teach the RM about time

State of the Art | Reservation-based Scheduling

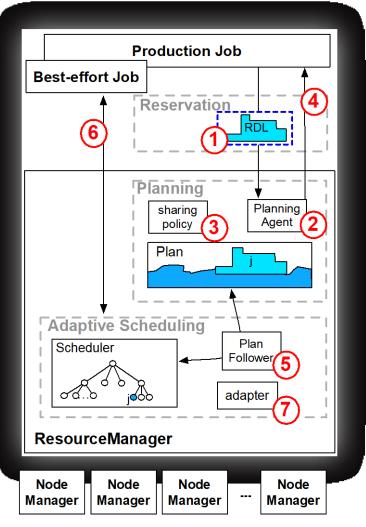




- Ideas:
- 1) Declaratively negotiate use of resources
- 2) Leverage the exposed flexibility to plan
- 3) Dynamically adapt scheduling invariants

Teach the RM about time: Architecture

Reservation-based Scheduling



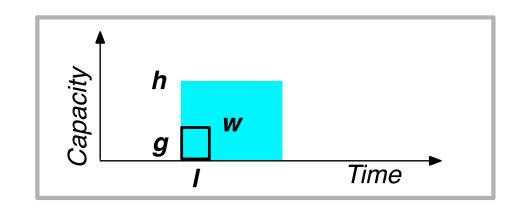
- Steps:
- 1. App formulates reservation request in RDL
- 2. Request is "placed" in the *Plan*
- 3. Allocation is validated against sharing policy
- 4. System commits to deliver resources on time
- 5. Plan is dynamically enacted
- 6. Jobs get (reserved) resources
- 7. System adapts to live conditions

92

(1) Reservation Definition Language (RDL)

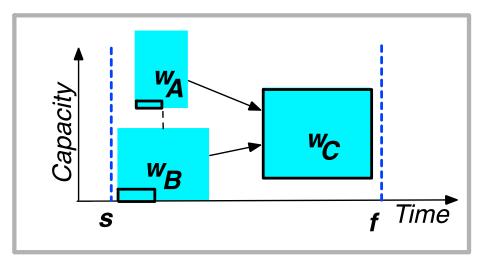
a) atomic RDL expression

```
atom(b,g,h,l,w)
e.g., atom (<2GB,1core>, 1, 10,
1min, 10bundle/min)
```

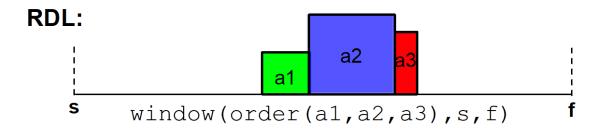


b) composite RDL expression

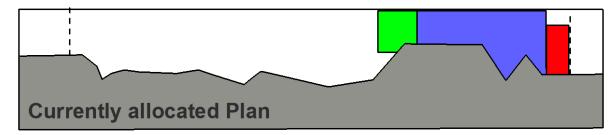
```
window(
  order(
    all(atom(b,gA,hA,lA,wA),
        atom(b,gB,hB,lB,wB)),
    atom(b,gC,hC,lC,wC)),
  s,f)
```



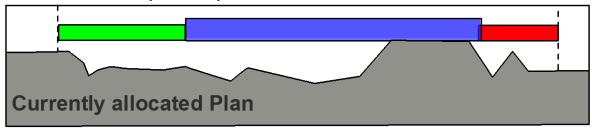
(2) Greedy Agents: intuition



GREE "late" allocation



GREE-L low-preemption allocation



- GREE
- Allocate "late", run "early"

- GREE-L
- Allocate "flat"
- Minimize preemption

(3) User Quotas (trade-off flexibility to fairness)

- Validation Policy: CapacityOverTimePolicy
- instantaneous max, running avg
- e.g., user does not exceed instantaneous 30% allocation, and
- an average of 10% in any window of 24h

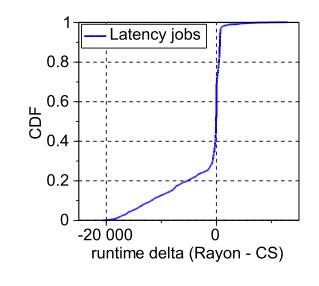
• O(n) scanning the inventory min(alloc) – T to max(alloc) + T

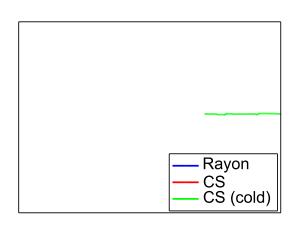
96

(7) Adapting to changing conditions

- Coping with Misprediction (user)
- budget for them in reservation by overallocating
- continue in best-effort mode
- re-negotiate to extend reservation
- Coping with Failures (system)
- leave headroom in plan
- monitor and re-plan (move jobs)
- discard reservations (last accepted/least important)

Comparing against Hadoop





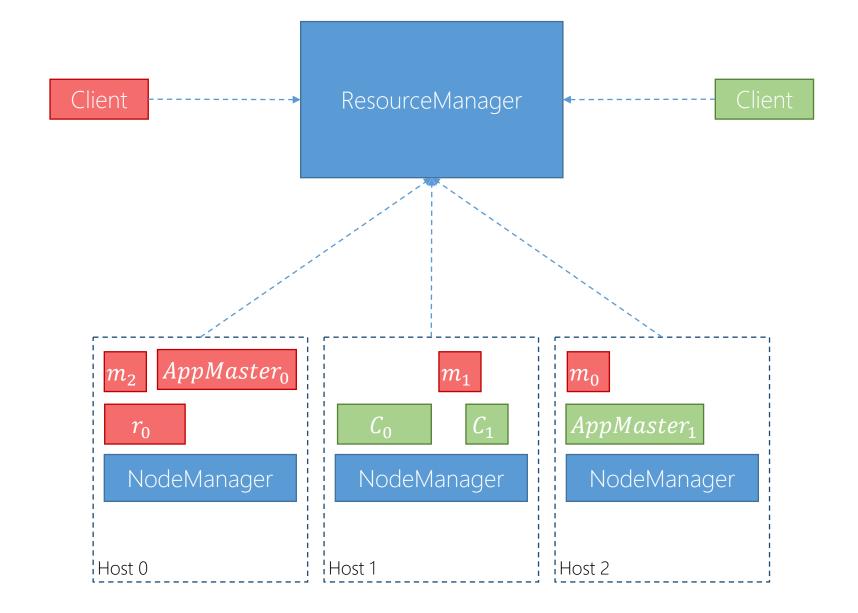
- Results
- meet all production job SLAs
- lowers best-effort jobs latency
- increased cluster utilization and throughput

Rayon Conclusion

- Idea: explicit treatment of time in resource management
- Enables: completion SLAs, low-latency for best-effort jobs, high ROI
- End-to-end system effort: in Apache Hadoop 2.6

Future Directions

- Hive/MR modeling (Perforator project)
- Giraph modeling (PreDICT: Adrian Popescu EPFL)
- Advanced agents for placement
- Dynamic pricing

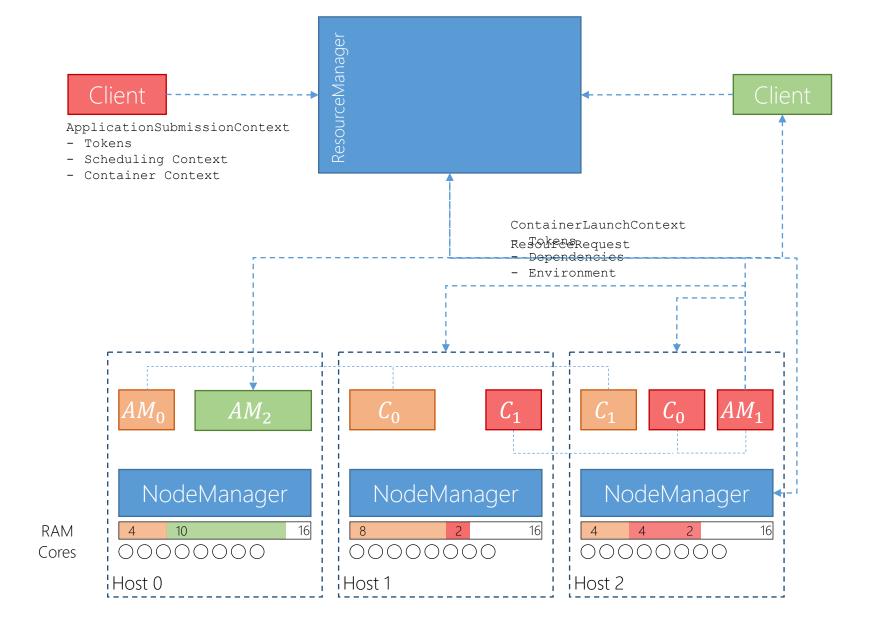


Queries

Inline containers into the ApplicationMaster

Sessions

Persistent connection to client Elastically allocate resources Retain resources across queries



```
AMRM::allocate()
                   AllocateResponse {
                                            AllocateRequest
                    // Completed containers
                                              ResourceRequest* {
                    Container* {
                                                // Resource
                      // Host
                                                // Locality
                      // Resource
                                                // Priority
                      // Priority
                      // Token
                (WAL)
HDFS
                                            ContainerLaunchContext {
                                              // LocalResources (dependencies)
                                              // Environment
                                              // Command
                                              // Tokens (container, impersonation)
                           AMNM::startContainer()
            NodeManager-k
```