
Blind Men and an Elephant:
Perspectives on BigData

Chris Douglas, Carlo Curino
Microsoft Cloud and Information Services Lab

>whoami

Microsoft
Research Engineer, Cloud and Information Services Lab (CISL)

Apache
Chair, Apache Hadoop PMC

Presenter Notes
Presentation Notes
Research engineer in CISL; applied group doing research in distributed systems and machine learning
Applied: work closely with product teams to understand real problems in production systems
Applied: research and prototypes deployed in Microsoft clusters
Applied: work in OSS, contribute to Apache
Going to see some of our work in this tutorial, but please come find me; because I love to talk about our work

Also chair the Hadoop project at the Apache Software Foundation
Been working on Hadoop for 8 years, starting with Yahoo search
HDFS and MapReduce; one of the original designers and implementers of YARN

>id curino

Microsoft
Scientist, Cloud and Information Services Lab (CISL)

Apache
Committer, Apache Hadoop

Presenter Notes
Presentation Notes
I prepared this talk with Carlo Curino, who couldn’t be here today.

Carlo is scientist in CISL, a committer on the Hadoop project, and a researcher in database systems

Goals and Disclaimers
Goal

Understand the context (History)
Familiarize with the ecosystem (Taxonomy and key insights)
Learn to contribute (OSS—industry—Research interactions)

Classical Disclaimers
Not exhaustive or unbiased
Liberally borrowed slides from others
If I talk about your system, I expect you to stick up for it

[citation]

Presenter Notes
Presentation Notes
Context for BigData, how these systems came to be built
Then we’ll cover a wide range of projects in the BD ecosystem to get a partial snapshot of its state. This will probably take 80% of the talk
Finally, we’ll touch on some of the culture around BD, and how to participate

Any survey over this space is necessarily incomplete, and of course our selection is biased by the ones we’re most familiar with. I’ve worked on some of these systems, and I’m sure some of my own strong opinions will leak through. So if I don’t talk about your favorite system, I’m probably just not aware of it.

For those taking notes, when I post the slides online, I’ll include references to frameworks mentioned during the talk, referenced by citations in the top-right.

Some of the people who built the systems I’ll be presenting are in the room. If I say something that’s no longer true about your system please correct me, and please don’t hesitate to jump in and answer the hard questions.

History
Those who fail to learn from history are still gainfully employed

Presenter Notes
Presentation Notes
Anything before we get started?

Why are we talking about BigData?

BigData in the Database World
OLAP data warehouses
 Store and query historical business data
 1980’s: Parallel database systems based on “shared-nothing”
architectures (Gamma/GRACE, Teradata)
 2000’s: Netezza, Aster Data, DATAllegro, Greenplum, Vertica, ParAccel
OLTP
 1980’s: Tandem’s NonStop SQL system

#AsterixDB Slide courtesy of Michael Carey

Presenter Notes
Presentation Notes
Analyzing large datasets is not a new problem

Shared-nothing architectures for large-scale analytics: a storage manager per machine, upper layers that coordinate operations (transactions, etc.), with SQL as its interface
Turn of the century lots of scalable systems implementing sophisticated optimization and data access semantics; tunable for a wide range of workloads. Many of these were big acquisitions

Problem mostly solved

Web Crawl
Data
 Bulk, append only
 Massive (multi-PiB)
 Unstructured

Query
 Days, weeks to process
 Mostly full scans
 Procedural computation

Hardware
 Thousands of machines
 Consumer grade

Presenter Notes
Presentation Notes
Web crawl: cache of the known web- really multiple copies, so you know how it’s changing- and produce an annotated, inverted index to serve relevant search queries
2006: 100B nodes, 1T edges

Doesn’t match what parallel databases were optimized to do well; wrong kind of data, wrong query, wrong hardware
Doesn’t use the technology offered: indexes not helpful, few joins, faults constant (reexec txn not feasible)

Inktomi tried to use parallel DB, but web companies needed something else

• Purpose-built technology
• Within large web companies
• Well targeted mission (process webcrawl)
•  scale and fault tolerance

•

The origin

Google leading the pack

 Google File System + MapReduce (2003/2004)

 Open-source and parallel efforts

 Yahoo! adopts Hadoop ecosystem HDFS + MapReduce (2006)

 Microsoft Scope/Cosmos (2008) (more than MapReduce)

[mapreduce][Hadoop][scope][limplock]

Presenter Notes
Presentation Notes
The solution was purpose-built infrastructure optimized for shipping procedural code for full scans over unreliable hardware. Most well-known example GFS/MapReduce or the Hadoop impl

The challenge isn’t implementing the fixed plan, but making forward progress over thousands of unreliable machines that not only fail, but “limp” (see SoCC paper, “limplock”).

Built for scale (web is growing) and fault tolerance (hardware is cheap)

Central Job/Resource coordinator
Workers collocated with data
Optimized for full scans
Automatic parallelism

Host 0 Host 1 Host 2

TaskTracker TaskTracker TaskTracker

Jo
bT

ra
ck

er

𝐽𝐽1𝐽𝐽0

r

𝐽𝐽2

m

r

m m m

r

m

r

m m m

r

m

r

m m m

Client

DataNode DataNode DataNode

MapReduce (Hadoop 1.x)

Presenter Notes
Presentation Notes
To take a specific example representative of the trend, consider the Hadoop implementation
Anyone need a refresh on MapReduce?

Architecture is straightforward. Jobs are submitted to a central coordinator with descriptions of UDFs, ships those to nodes storing data and plugs them into a MR workflow. The central coordinator (JobTracker) reasons about full and partial node failure to schedule new tasks. With multiple users, it also arbitrates among them according to some administrator-configured policy (like fairness, or capacity (who paid for what fraction of the cluster?))

Why are we talking about Hadoop?

Presenter Notes
Presentation Notes
Hadoop was built to solve a specific problem. Why should people outside of web companies even know it exists?

OSS: actually, Y! strategy; saw this was going to be a commodity like webserver in late 90s

Growth
Access, access, access…
 All the data sit in the DFS
 Trivial to use massive compute power
  lots of new applications
But… everything has to be MapReduce
 Cast any computation as map-only job
 MPI, graph processing, streaming, launching web-servers!?!

Presenter Notes
Presentation Notes
Show up at a web company, get an account on the cluster, and you have instant access to all its data
Instead of three managers’ approval to provision machines, obtain access to siloed data in odd formats, etc. can just run queries against web crawl, clicklogs, user profiles, etc. because it’s just *there*.

MapReduce will automatically parallelize your query and handle fault tolerance for you, so you, humble researcher, can use hundreds of machines to count cats or whatever.

This is great, if your query is built like a search index.

Many aren’t. Very quickly, users started running iterative workloads, graph workloads, even starting services as “map-only” jobs.

If you’re trying to run a MapReduce cluster…

Data Lake
Everybody wants BigData

Insight from raw data is cool
 Outside MS and Google, BigData = Hadoop MapReduce
 Hadoop as catch-all BigData solution (and cluster manager)
Even for Small Data
 Queries over samples
 Exploratory analysis

Presenter Notes
Presentation Notes
…this is pretty frustrating, but the idea that all your raw data should sit in one place so smart people can poke it with a stick really caught on.

What web companies had- and what companies outside wanted- was a data lake. And they wanted to use the same tools as web companies to create their own.

(click) Even when they don’t have a lot of data, yet. And they want interactive sessions, millisecond latencies, and a well-curated language to automatically optimize their intent. It’s easy to poke fun, because this is so far from the problem this software was originally designed to solve, but the designers and implementers of these stacks are solving the most important problems to them, in order. As their users change, the software has been pulled in some interesting directions.

Programming model rigidity
 map/reduce operators not expressive enough
 High-level languages over MR limited
Efficiency
 Batch oriented, high latency
 Scale and fault tolerance over performance
Hadoop implementation limitations
 Map vs Reduce slots lead to low cluster utilization (~70%)
 Bottleneck for resource allocation
 Single points of failure

Shortcomings of first-gen BigData

Presenter Notes
Presentation Notes
Search infrastructure created the data lake, but we need different tools to dredge it.

Some apply to Hadoop impl, but apply generally to tools built into early BD platforms.

Succinctly, the first-gen programming models are too rigid to work around the batch-oriented design. We want to build the second generation without losing too much of the scale or fault tolerance- hardware trends have driven companies to BD and scale-out architecture at least as much as the data lake

We all agree it should be fixed
Papers, blog posts, startups… we get it

BigData next generation

Presenter Notes
Presentation Notes
Fortunately, everyone agrees on how we should fix this. 

There have been dozens of “better than Mapreduce” on “other than search” workload papers with multiple orders of magnitude improvements. Carlo compares this to databases in the 70s, when those kinds of improvements were still possible.

BigData second generation

Systems Database Hybrid

Pig, Hive, Cascading, Crunch, Sawzall, FlumeJava,…
Calcite, Summingbird, Corfu, …
Tez, REEF, Twill, Chronos, Marathon, …
YARN, Mesos, Omega, Borg, Corona, …

Impala, SCOPE, Drill, Tajo, Presto, … Spark, Asterix, Flink, …

Presenter Notes
Presentation Notes
This is the outline for the remainder of the talk. Again, these lists are necessarily partial and I apologize for omissions or miscategorizations

Some authors of papers might be in the room; I’m happy to be corrected by the people who built the system

Systems-oriented approaches look at v1 systems, and see a problem of layering. Resource management, dataflow and logical planning, and programming model are separable modules that could be independently developed and deployed.

(what we’re calling) Database-oriented approaches see a problem with the abstraction. Parallel databases have all the tools to manage larger volumes of data, nothing fundamental about the purpose-built search infrastructure. These systems own everything down to the storage and present a single point of entry into a vertically integrated stack.

Also hybrids: layered systems, but each is developed together

(click) We’ll work bottom-up in the systems stack…

Systems: Cluster OS
“The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.” --Dijkstra

Presenter Notes
Presentation Notes
…starting with systems dedicated to allocating resources across tenants in a datacenter.

Apache Hadoop YARN (2011, SoCC13)*
 Request-based central scheduler
Apache Mesos (2009, NSDI11)*
 Offer-based, two-level scheduler
Google Omega (2013, EuroSys13)*
 Shared-state, two-level scheduler

Systems: Cluster OS

* all three won best-paper or best-student-paper

Presenter Notes
Presentation Notes
Dates are approximately when each framework was first presented publicly and the conference where the paper is published

Host 0 Host 1 Host 2

NodeManager NodeManager NodeManager

Jo
bT

ra
ck

er

𝐽𝐽1𝐽𝐽0 𝐽𝐽2
ResourceManager

r

m

r

m m m

r

m

r

m m m

r

m

r

m m m

Client

DataNode DataNode DataNode

Apache Hadoop YARN

TaskTrackerTaskTracker TaskTracker

Central ResourceManager (RM)
 Enforces sharing policies across tenants
 Matches available rsrc to pending requests

Presenter Notes
Presentation Notes
Hadoop replaced the JobTracker with a ResourceManager (click)

Instead of map/reduce slots- machine slices- the ResourceManager tracks a vector of resources (CPU/mem, etc.) from each machine.

The per-node agent tracks resources, rather than tasks.

Host 0 Host 2

NodeManager NodeManager

ResourceManager

Client

DataNode
Host 1

NodeManager

DataNode DataNode

YARN Container Lifecycle

Users submit Applications
 ApplicationMaster (AM) control process
AMs request Containers
 ResourceRequest encodes constraints
 AM binds to a process desc on receipt
Containers started by NodeManagers
 Enforces isolation between processes
 Monitoring, reporting for containers

Central ResourceManager
 Enforces sharing policies across tenants
 Matches available rsrc to pending requests 𝐴𝐴𝐴𝐴𝐴𝐴0

AM 𝐶𝐶0

𝐶𝐶2
𝐶𝐶1

Presenter Notes
Presentation Notes
Correspondingly, the RM tracks applications, not jobs.

On accepting an application, the RM starts a controller process called the ApplicationMaster

The AM builds a profile of the resources it wants, and sends it to the ResourceManager

The RM uses the constraints in the request to match available resources to applications and return a container lease.

The AM binds work to a container, and forwards the description+lease to the node, which starts a process

Note that each container allocated by an application is only a bundle of resources to YARN, so they can be variable

Any questions?

Hard constraints
Memory, CPU cores, [network], [disk]
Affinity, anti-affinity

Node labels (opaque)
e.g., Public-facing IP, processor architecture, OS

Soft constraints
Locality

YARN ResourceRequest

Presenter Notes
Presentation Notes
These obviously aren’t the full set of possible constraints, but this is evolving to cover new cases (e.g., long-running services)

In addition to hard resource constraints, the YARN scheduler was recently extended to support labeled nodes. The meaning of labels are deployment-specific, but it’s a good way to experiment with different constraints.

As YARN evolved from MapReduce, applications can specify nodes in the cluster where they can run efficiently. Details of encoding are kind of cool, see me

There’s a lot of work in isolation right now. If you’re interested in this area, please see me after the talk

Flexibility, Performance and Availability
 Multiple Programming Models
 Central components do less  scale better
 Easier High-Availability (e.g., RM vs AM)

Why does this matter?

System Jobs/Day Tasks/Day Cores pegged
Hadoop 1.0 77k 4M 3.2

YARN 125k (150k) 12M (15M) 6 (10)

Presenter Notes
Presentation Notes
Even with a very similar workload, we can pack machines more tightly.

RM does less work than JT, can lower latencies to ~3 seconds in 4k cluster from 30s

Big win in util, also brought new frameworks to these clusters more efficiently expr intent than MR

Anything else?

Presenter Notes
Presentation Notes
Short on time, so I’m just going to keep going…

Maintenance, Upgrades, and Experimentation
 Run with multiple framework versions (at one time)
 Trying out a new idea is as simple as launching a job

Anything else?

Presenter Notes
Presentation Notes
Architecturally, one can run multiple frameworks, or versions of frameworks even on YARN upgrades.

Those dozens of “better than Hadoop” papers had zero chance of being tried in a real production cluster

Now: convince one researcher/engineer to run your code in a YARN cluster. Protected environment, allows for experimentation
Lesson from MapReduce not taken by Spark/Database

Mesos Architecture
MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Resource
offer

Pick framework to
offer resources to

Slide courtesy of Mesosphere

Mesos Architecture
MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Resource
offer

Pick framework to
offer resources to

Resource offer =
 list of (node, availableResources)

 E.g. { (node1, <2 CPUs, 4 GB>),
 (node2, <3 CPUs, 2 GB>) }

Slide courtesy of Mesosphere

Mesos Architecture
MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor
Hadoop
executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources to

task
Framework-specific

scheduling

Resource
offer

Launches and
isolates executors

Slide courtesy of Mesosphere

Presenter Notes
Presentation Notes
Note about separation of inter-framework and intra-framework

Framework offers
Arbitrates among services
Services have their own models for tenants
Supports authentication plugins (working on Kerberos)
Preemption (“inverse offers”) in progress

Supports resource isolation using cgroups
CPU/memory/disk iops/disk usage

Scalable
Largest single-cluster deployments in “high thousands” of nodes
Tens of thousands of tasks (framework workers), tested to 50K

Apache Mesos

Presenter Notes
Presentation Notes
Mesos supports isolation between frameworks, and those frameworks arbitrate among tenants
Supports thread/executor-based services where task may be lightweight, short-lived

Omega critique of Mesos

Slide courtesy of John Wilkes

Presenter Notes
Presentation Notes
While an offer is outstanding, Mesos can’t offer the same resources to another framework

(explain example)

Great analogy to optimistic concurrency control: if we can detect conflicts rather than preventing them, then we can scale better and- in most cases- get away with our choices

Omega

Slide courtesy of John Wilkes

Presenter Notes
Presentation Notes

Analogy with optimistic concurrency

Omega

Slide courtesy of John Wilkes

Simulation Results

Presenter Notes
Presentation Notes
I’ll refer you to the paper for a detailed discussion of the simulations.

Briefly: scheduling batch and service workloads in the optimistic scheduler is more successful with higher throughput

Some ideas rolled into Borg, will be presented soon in EuroSys 2015; can’t discuss. If !recorded, note many similarities to the systems we’ve discussed (resource constraints/isolation, support for debugging)

YARN
Organized by tenant/application
Enforces global invariants (user/job/queue)
Request constraints matched against available resources

Mesos/Omega
Organized by framework/service
Multi-tenancy managed at second tier
Priority managed cooperatively across frameworks

Summarizing

Presenter Notes
Presentation Notes
Mesos/Omega: 2nd level needs to agree on priority

Frameworks are trusted
YARN: frameworks are run by users, users may run webservers as MapReduce jobs, never trust them

If you’re interested in isolation, in scheduling, in prediction: these platforms are useful points of extension

Systems: Libraries
“Although correct, it hurts me, for I don’t like to crack an egg with a
sledgehammer, no matter how effective the sledgehammer is for
doing so.” --Dijkstra

Presenter Notes
Presentation Notes
Great, now I can start processes on clusters

Not a great API

Repeated, necessary work
 Communication
 Configuration
 Data/Control flow
 Error handling/Fault tolerance
 Cross-platform
Common “better than Hadoop” tricks
 Amortize scheduling overhead
 Avoid (re)materializing data (pipelining, caching)

Building on the Cluster OS

Presenter Notes
Presentation Notes
TODO: keep list around during problem presentation, for reference

Cluster schedulers provide some services to applications- limited lifecycle management (e.g., notification of exit), cluster cond- but explicitly avoid putting application logic in the platform

Every framework needs to implement wireup, configure processes, define control/data planes, manage error handling and fault tolerance (recall the YARN AM runs in the cluster, needs to recover from failure). Frameworks also need to reason about semantics of multiple cluster OS impl

Common components/techniques: reusing processes allocated by the cluster OS, cache data in process memory (particularly impt for iterative computation), avoid materializing data between stages

The Challenge

35

 Fault Tolerance

 Row/Column Storage

 High Bandwidth Networking

Cluster OS

SQL / Hive … … Machine
LearningSQL / Hive … … Machine
Learning

Presenter Notes
Presentation Notes
Recover from faults/lost intermediate data
Reference indexes, available metadata in the optimizer
Bandwidth between operators for joins, etc.

The Challenge

36

SQL / Hive … … Machine
Learning

 Fault Awareness

 Local data caching

 Low Latency Networking

Cluster OS

Presenter Notes
Presentation Notes
May continue to make progress without some data
Iterative computation over the same data (store in memory)
Communication between processes (not bandwidth dominant)

The Challenge

37

Cluster OS

SQL / Hive … … Machine
LearningSQL / Hive … … Machine
Learning

Presenter Notes
Presentation Notes
Emph long path to cover between framework and cluster OS, more efficient to share some common func

Library Stack

38

SQL / Hive

Cluster OS

… … Machine
Learning

Library/Meta-framework

Cluster OS

SQL / Hive … … Machine
Learning

Library Stack

39

Cluster OS

SQL / Hive … … Machine
Learning

Library/Meta-framework

Operator API and Library

Logical Abstraction

Services: Apache Slider, Marathon, Chronos
 Deploy existing applications
Apache Twill (incubating) (2013)
 Thread-oriented abstraction on YARN
Apache REEF (incubating) (2014, VLDB14, SIGMOD15)
 Event-driven control plane for decentralized dataflows
Apache Tez (2013, SIGMOD15)
 Dryad-inspired DAG scheduler for Hive/Pig/Cascading

Systems: Libraries

Presenter Notes
Presentation Notes
Going to look briefly at a few examples

YARN
Slider
 Start a service on YARN
 Lifecycle management
 Discovery
Oozie
 Workflow manager
 Submits workflows to YARN

Services in shared clusters
Mesos
Marathon
 “init” for datacenter
 Long-running services

Chronos
 “cron” for datacenter

Presenter Notes
Presentation Notes
Slider is a good example of a library in YARN. Often one just needs an existing service pushed into a shared cluster, with monitoring, service discovery, and lifecycle management (start/stop/etc.). Slider is a service deployment layer on top of YARN that abstracts away most of the difficult parts, while offering some APIs for deeper integraitons. It’s a gateway to running on YARN.

Oozie existed before YARN. YARN absorbed some of its functions- DAG execution moved to the ApplicationMaster process- but triggering submissions based on time or data availability is still critical to many large deployments. It runs outside the YARN cluster as a separate instance.

Mesos has taken “cluster OS” quite literally, defined “init” and “cron”. Marathon and Chronos bootstrap services running in Mesos and manage recurring workflows.

Familiar thread model (java.util.concurrent)

Features
Real-time logging
Command messages
Service Registry
Elastic Resource

Apache Twill (incubating)
public class HelloWorld {

 static Logger LOG = LoggerFactory.getLogger(HelloWorld.class);

 static class HW extends AbstractTwillRunnable {

 @Override

 public void run() {

 LOG.info("Hello World");

 }

 }

 public static void main(String[] args) throws Exception {

 YarnConfiguration conf = new YarnConfiguration();

 TwillRunnerService runner =

 new YarnTwillRunnerService(conf, "localhost:2181");

 runner.startAndWait();

 TwillController controller = runner.prepare(new HW()).start();

 Services.getCompletionFuture(controller).get();

 }

}

Presenter Notes
Presentation Notes
Twill (formerly Weave) is a layer over YARN, exposing an interface that shares some similarities with Java’s concurrent APIs.

Not a particularly deep framework, but a good example of of intermediate layering that can be the right tool for prototyping or simple queries.

In contrast to REEF or Tez, Twill is an accessible, but less powerful library for building simple YARN applications. Its featureset is reasonable for running small services or interactive jobs in the cluster.

Twill isn’t particularly active, but it’s an example of intermediate layering that can be the right tool for prototyping or simple queries.

Intuition
Provide a “stdlib for BigData” distributed applications
Modular design (application diversity)
Support multiple resource managers (YARN, Mesos, processes, VMs)

Core REEF
Control flow pattern centralized, event-driven “driver”, and distributed “evaluators”
Separate the notion of task from evaluator (enables container re-use)

REEF Services
Data caching in evaluator, Naming and Communications, Coordination and
Consistent Logging, Configuration validation, etc..

Apache REEF

Presenter Notes
Presentation Notes
Retainable Evaluator Execution Framework

REEF
Client

Job1
Resource
Manager

Scheduler

NodeManager NodeManager NodeManager

Evaluator

Task

se
rv

ic
es

Evaluator

Task

se
rv

ic
es

REEF RT

Driver

Name-
based

User control
flow logic

Retains
State!

User data
crunching

logic

Fault-
detection

Injection-based
checkable

configuration

Event-based
Control flow

Presenter Notes
Presentation Notes
REEF starts a Driver- in YARN, this would be the AM- that coordates all the control and event flow in the system. (click) Frameworks write handlers for events to add custom logic for failover, for persisting state in the driver across failures, etc.

Rather than being processes, Tasks are started in Evaluators. (click) These may store state, offer services to the task, amortize the startup overhead for work in the cluster, and handle error reporting/logging so this code can be written more straightforwardly

(click) Evaluators can also offer services to tasks, like persistent storage or coordination logic.

When a task starts in an evaluator, it can access cached state and avoid the startup overheads of a normal task. REEF starts tasks in less than 10ms

(click) This is all wired together by dependency injection, so the configuration can be statically checked. Anyone who’s used MR knows that an errant configuration property can cause a job to fail. At Yahoo, we measured and a double-digit percentage of failures were user misconfig

(click) Framework authors can write straightforward, event-driven code instead of reinventing/rediscovering how to manage this complexity and scale it.

Wake
Networking abstraction
Event-based programming/remoting
 Static checking of event flows
 Aggressive JVM event inlining
Static subset of Rx

Tang
Configuration as dependency injection

Corfu
Currently deployable as a service using REEF
Integration as a service to applications for distributed data structures

Libraries

Presenter Notes
Presentation Notes
REEF is, itself composed of libraries

Wake (Gon) is a networking abstraction that manages communication among containers and the events flowing through the system

Tang offers a solution to an under-appreciated problem in building these systems: wiring the container. Everyone familiar with dependency injection? Tang does static checks of your object graph before running the job, so errors in job configuration are discovered as early as possible.

Corfu is a brilliant project- there’s currently an open-source implementation developed by its original authors on github- that provides a shared log abstraction to a distributed set of writers. Using this primitive, one can write highly-available data structures. I’d encourage everyone to read the papers, they’re great.

Control Flow is centralized in the Driver
Evaluator, Tasks configuration and launch

Error Handling is centralized in the Driver
All exceptions are forwarded to the Driver

All APIs are asynchronous
Caching / Checkpointing / Group communication

Example Apps Running on REEF
MR, Asynch Page Rank, ML regressions, PCA, distributed shell,
Azure Streaming Analytics,…

Cross-platform, multi-language
YARN, Mesos
Java, .NET

Apache REEF Summary

Presenter Notes
Presentation Notes
If you’re considering writing a framework for multiple cluster OSes, REEF offers many thoughtfully designed abstractions.

It’s also worth pointing out that while the BD ecosystem is mostly written on the JVM, REEF also supports .NET, and more than that, it supports mixing runtimes. So a framework can write its handlers in .NET and the REEF driver (still in Java) will use it

DAG API
• Defines the structure of the data processing and the relationship

between producers and consumers
• Defines complex data flow pipelines using simple graph connection

APIs. Tez expands the logical DAG at runtime
Runtime API

• Defines the interfaces using which the framework and app code
interact with each other

• App code transforms data and moves it between tasks

Page 47

Apache Tez

Processor

Input

Output

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
Tez is a DAG engine that has replaced MapReduce in multiple frameworks, notably Pig, Hive, and Cascading.

Tez takes inspiration from Dryad, an execution engine we’ll see again later in the talk.

It defines low-level APIs for specifying DAGs for distributed execution, including code in the driver/AM

Library of Inputs and Outputs
Classical ‘Map’

Page 48

Classical ‘Reduce’

Intermediate ‘Reduce’ for
Map-Reduce-Reduce

Map
Processor

HDFS
Input

Sorted
Output

Reduce
Processor

Shuffle
Input

HDFS
Output

Reduce
Processor

Shuffle
Input

Sorted
Output

• What is built in?
– Hadoop InputFormat/OutputFormat
– SortedGroupedPartitioned Key-Value

Input/Output
– UnsortedGroupedPartitioned Key-Value

Input/Output
– Key-Value Input/Output

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
Thin API around arbitrary application code
Compose inputs, processor and outputs
Applications specify logical data format and data transfer
Customize for performance

DataSourceDescriptor dataSource = /* specify input data */

DataSinkDescriptor dataSink = /* specify output location */

// create vertices

Vertex tokenvertex = Vertex.create(...).addDataSource(INPUT, dataSource);

Vertex sumvertex = Vertex.create(...).addDataSink(OUTPUT, dataSink);

// create edge

EdgeProperty edge = /* Inititialize Edge with Hash partitioner */

DAG dag = DAG.create("WordCount");

dag.addVertex(tokenizerVertex)

 .addVertex(summationVertex)

 .addEdge(Edge.create(tokenvertex, sumvertex, edge);

Page 49

WordCount Tokenizer

SumProcessor

Define source/sink

Define vertices

Define edges

Wireup

Tokenizer Tokenizer

SumProcessor SumProcessor

…

…

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
There’s simplified sample code here from the Tez project, explore details on your own. The point is that the API is for framework authors, not end-users.

(click) A framework specifies input sources (and sinks)
(click) Vertices in the graph (not processes, but phases)
(click) Edges defining the partitioning of data emitted from a vertex and communication with its connected compoents
(click) Then we wire up the dag

At runtime, the number of instances of a vertex may depend on properties at running (in MR, quantity/partitioning of input data)

Page 50

Edge Types

One-To-One
Data from producer i routes to consumer i

Broadcast
Data from producer routes to all consumer tasks

Scatter-Gather
Producers partition data into shards.
Shard i from all producers routes to consumer i

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
Can also define custom edges that can effect more subtle partitioning, including dynamically-tuned parallelism based on sampling

Different surface from each library
Tez DAG exec, storage libraries, coordination, YARN-only
REEF stdlib, difficult plumbing for distrib apps, cross-platform
Slider service discovery, gradually expose YARN surface
Marathon/Chronos treat services in datacenter as daemons

Service as a Service
Apache Myriad (incubating) project runs YARN as a Mesos service

MapReduce is a library
In both YARN and Mesos, MapReduce is library code
Though deployment is different

Systems: libraries

Presenter Notes
Presentation Notes
All the libraries we looked at expose different APIs to frameworks, with varying levels of detail

The “hello world” is tolerable in all of these, but Slider/Marathon/Chronos are clearly used where a “framework” needs more basic services than Tez/REEF, where a framework is interacting with the DAG through a cost-based optimizer and other layers

In one of those “turtles all the way down” moments in CS, proposals to run YARN under Mesos, YARN under YARN, and other variants have been proposed and even built, as in an incubating project called Myriad that runs YARN as a Mesos service

In all these next-generation systems, MR is just a library. Applications that used MR as an engine can now target other engines, and they have.

Systems: Applications
“So… what would you say you DO here?”

Presenter Notes
Presentation Notes
Sparking of applications: we’re X minutes into the tutorial and nowhere near anything a user would touch. So let’s get to that

Procedural dataflow language
Earlier versions omit control flow, modularity features (loops, funcs, branches)
Rich support for UDFs, Macros (DEFINE, IMPORT)
Builtin Functions (load/stor, eval, relational, math, string, datetime, arithmetic)

Supports multiple execution engines
Tez, MapReduce

Rule-based optimizer
Safe transformations (push-up filter, push-down flatten, pruning, etc.)

Interactive mode
“Grunt” shell for interactive analysis
Explore samples of data

Apache Pig

Presenter Notes
Presentation Notes
Pig is a dataflow language created at Yahoo to make it easier for users to write MapReduce jobs

Rather than a declarative, SQL-style syntax, Pig asks users to write procedural code for their query. Some complain that this can feel like writing an AST, but at one time more than 80% of the jobs run in Yahoo clusters were Pig jobs. Also heavily used at Twitter. Users also submit UDFs to a “PiggyBank”; Twitter publishes Elephant-bird, which includes Pig scripts among other utilities for working with compression, etc.

Not declarative, gives user a lot of control over how their query will run in the cluster. The automatic optimizations are not aggressive at all; more like constant propagation or dead code elimination

Sample PigLatin Queries
Query 1: Get the list of web pages visited by users whose age is between 20 and 29 years.

USERS = load ‘users’ as (uid, age);
USERS_20s = filter USERS by age >= 20 and age <= 29;
PVs = load ‘pages’ as (url, uid, timestamp);
PVs_u20s = join USERS_20s by uid, PVs by uid;

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>106;
output = FOREACH big_groups
 GENERATE category, AVG(good_urls.pagerank)

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 106

Query 2: PageRank

PigLatin

SQL

Presenter Notes
Presentation Notes
Not going to spend much time on examples, but the PigLatin language is fairly easy to grasp.

As an interface to the data lake, Pig is a pretty effective way to work with raw data. Some Pig queries take ~5% of the equivalent MapReduce code.

Recently, Pig got a new backend in Tez…

Example: Pig Skewed Join

Page 55

Aggregate

Sample L

Join

Stage sample map
on distributed cache

l = LOAD ‘left’ AS (x, y);
r = LOAD ‘right’ AS (x, z);
j = JOIN l BY x, r BY x
 USING ‘skewed’;

Load &
Sample

Aggregate

Partition L

Join

Pass through input
via 1-1 edge

Partition R

HDFS

Broadcast
sample map

Partition L and Partition R

Pig – MR Pig – Tez

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
Because it works with DAGs and not the fixed MapReduce execution plan, note that the Tez engine avoid materializing (and possibly replicating) its intermediate data in HDFS.

The Pig language still gives programmers a lot of control over the execution plan- it’s not become a declarative language like SQL- but by being built on Tez, it can leverage more of the low-level optimizations exposed by that library

Users write a variant of SQL (HiveQL)
Used by projects that may not use the Hive engine
Interactive shell (Beeline)

HiveServer2 (metaserver)
Stores schema, statistics; coordinates transactions
Used by other frameworks (e.g., MapReduce, Pig)

ACID transactions
INSERT, UPDATE, DELETE
Only for bucketed tables in ORC format
No BEGIN, COMMIT, ROLLBACK
Snapshot-level isolation
Streaming ingest

Apache Hive

HiveQL

Hive Engine

MapReduce Tez Spark

Presenter Notes
Presentation Notes
Hive was originally built by Facebook (released 2009) for the same reasons that Yahoo wrote Pig: MapReduce does a lot for the user, but it’s extremely cumbersome. Today 300+PB under management, 600TB loaded daily, 60K queries 1K users/day

Instead of inventing a new language, they elected to build a SQL-like layer for OLAP queries. I don’t know if HiveQL is close to some SQL standard. Interestingly (foreshadowing), Hive not only supports execution engines via plugins (MR, Tez, Spark), but the Hive engine itself has been swapped out in SparkSQL, and only HiveQL is reused

The Hive metaserver was briefly forked into an independent project called HCatalog, if anyone is familiar with it. It stores information about tables including some schema information, statistics, and it also coordinates ACID transactions (added to Hive 0.13 last year)

Hive lays out its data in HDFS files. It supports updates by writing delta files against the dimension tables and doing periodic compactions. Updates are still batch operations; not intended for small updates

Vectorized Query Execution
Process blocks of rows at a time
Very few function calls/conditional branches in inner loop
Set of known types, subset of built-in func and UDFs

Optimized Record Columnar File (ORCFile)
Replaces Hive RCFile
Efficient integer transcoding, zigzag encoding, run-length encoding (RLE), etc.
Support for push-down predicates using lightweight indexes
Metadata statistics can be used to answer queries, avoid decompression
Additional compression can significantly decrease storage costs

Stinger Initiative

Presenter Notes
Presentation Notes
The “Stinger initiative” last year added many modern DB features to Hive (Hortonworks, Microsoft).

Techniques familiar from MonetDB and C-Store/Vertica

A vectorized query engine was added in Hive 0.13. This significantly speeds up some queries by processing batches of rows, rather than considering one tuple at a time. The details are out of scope for this talk, but email me if you’re interested in references.

The ORC file format is extremely interesting. We can’t get into too many details, but it’s an efficient format that complements the vectorized query engine. With Tez, these improvements improved Hive’s performance by orders of magnitude (100x-200x)

Most of this is taking database technology and scheduling work on a cluster OS (via Tez). Our SQL workloads compete for resources with graph processing, Pig, etc. governed by the same set of invariants.

Future iterations include a layer called LLAP (live long and process) which is a persistent cache of data (details obscure); daemon process like Impala for sub-second queries

Hive – MR Hive – Tez

Hive-on-MR vs. Hive-on-Tez
SELECT a.x, AVERAGE(b.y) AS avg
 FROM a JOIN b ON (a.id = b.id) GROUP BY a
UNION SELECT x, AVERAGE(y) AS AVG
 FROM c GROUP BY x
ORDER BY AVG;

SELECT a.state

JOIN (a, c)
SELECT c.price

SELECT b.id

JOIN(a, b)
GROUP BY a.state

COUNT(*)
AVERAGE(c.price)

M M M

R R

M M

R

M M

R

M M

R

HDFS

HDFS

HDFS

M M M

R R

R

M M

R

R

SELECT a.state,
c.itemId

JOIN (a, c)

JOIN(a, b)
GROUP BY a.state

COUNT(*)
AVERAGE(c.price)

SELECT b.id

Tez avoids unneeded
writes to HDFS

Slide courtesy of Hortonworks

Presenter Notes
Presentation Notes
As we saw with Pig, Hive’s Tez engine yields a much more efficient plan than the fixed MapReduce engine. It avoids materializing data in HDFS and scheduling latencies between each phase of the job.

Dryad DAG computations
Storm stream processing
Giraph graph-processing, Bulk Synchronous Parallel (Pregel)
Flink (Stratosphere) parallel, iterative computations
Crunch library for MapReduce/Spark pipelines
Hama bulk-synchronous parallel
MRQL SQL-like query language over MapReduce, Hama, Spark
Spark interactive, in-memory, iterative
Drill low-latency, SQL query engine
Impala (Llama) scalable, interactive, SQL-like query

Large application ecosystem

Presenter Notes
Presentation Notes
Again, we’re just scratching the surface, here. We haven’t talked about any of the other apps for
ingesting data- Kafka, Flume; stream processing: Samza, Storm
Tables- HBase, Accumulo, Phoenix (stored procedures)
ETL: Sqoop (to/from database), Cloudera Kite
Data management/security: Falcon, Sentry, Ranger

As of a few days ago, Flink has been ported to run with Tez as an engine

The high-level point is that many of these layers built on MapReduce have evolved to support multiple execution engines
Many of these engines use similar tricks from the “better than MR” exploration
No agreement on targeting one-or-more OS, which intermediate layers are necessary, or a common language/runtime
+++ Also note that many layers in the OS stack are developed by different teams at different companies, often with limited coordination

BigData second generation

Systems Database Hybrid

Pig, Hive, Cascading, Crunch, Sawzall, FlumeJava,…
Calcite, Summingbird, Corfu, …
Tez, REEF, Twill, Chronos, Marathon, …
YARN, Mesos, Omega, Borg, Corona, …

Impala, SCOPE, Drill, Tajo, Presto, … Spark, Asterix, Flink, …

Presenter Notes
Presentation Notes
OK, so onto the next type of systems, the fully integrated stack

Database approach
“…and in the darkness bind them.”

Presenter Notes
Presentation Notes
…I acknowledged my biases, already, right? OK, good.

MPP Analytic Query Engine
Inspired by Google Dremel
Interactive workloads (lower latency, sometimes by orders of magnitude)
Restricted SQL language (only fast operations)
Support for scalar UDFs, user-defined aggregates (UDA)
Support for low-level optimizations (e.g., code generation in LLVM)

Deep integration with Hadoop
Data in HDFS/HBase, support common formats (Parquet, Avro, text, Seq, RC)
Pin data in memory (HDFS feature)
Daemons co-located with HDFS DataNodes
Kerberos/LDAP authorization
Apache Sentry (role-based auth) integration

Cloudera Impala

Presenter Notes
Presentation Notes
Literally ported classic MPP model to Hadoop, made it work for BigData
Tight integration with Hadoop, doesn’t replace Hive but handles much of its target workload
Low-level optimizations also from DB literature and practice (code generation, etc.)
Multi-tenancy defined intra-framework, sharing of processes across tenants
Ways to live with YARN, but not under YARN (Llama, discussed next)

it is a query engine, not a full DB (no transactions, limited support for UDFs, etc..)

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_new_features.html (as of 2.1.2)
Ideas from: http://www.slideshare.net/SwissHUG/cloudera-impala-15376625

Cloudera Impala Architecture

Presenter Notes
Presentation Notes
Impala is an impressive implementation of a modern MPP database, tightly integrated with other components in the Hadoop stack (note the Hive metastore)

Cloudera Impala Performance
Key technical tricks

Vertical integration (no MR)
Intra-framework multi-tenancy
YARN integration via Llama
C++ and LLVM code generation
Read-only data (no transactions)
Lightweight fault-tolerance

Presenter Notes
Presentation Notes
We won’t go into much detail here- I’ll refer you to the paper in this year’s CIDR and Impala’s documentation- but one word on Llama, which we’ve mentioned a few times

Llama negotiates with YARN as a trusted daemon. Impala can request additional resources from YARN- and return them- but no processes is created and YARN cannot forcibly reclaim resources from Impala to restore its invariants

This is sort of like using VirtualLock in Windows or mlock/mlockall in Linux. Claiming resources from the OS because the DB “knows better” is part of the culture. Attempting to do some cooperative sharing acknowledges that its operating environment is shared

Microsoft Scope / Apollo

-

-
-
-

-

Presenter Notes
Presentation Notes
Departing from the OSS Hadoop ecosystem, we have SCOPE. S is the framework that powers Bing and other analytic workloads inside MSFT

Full integration from language down to the distributed store

Single point of entry SCOPE (SQL-like language) built on Dryad

Cloud Scale Job
―The job query plan is

represented as a DAG
―Tasks are the basic unit of

computation
―Tasks are grouped in Stages
―Execution is driven by a

scheduler

Job sample: SCOPE (VLDBJ, 2012)

Tasks Stage

3

Presenter Notes
Presentation Notes
(describe)

This is very similar to what we saw in Hive, but with important difference: all jobs are SCOPE. The runtime can make more aggressive optimizations because it owns the full stack.

To illustrate why this is important…

Apollo Distributed Scheduler

Queue allows to reason about future
resource availability
and to defer conflict resolution

10

Presenter Notes
Presentation Notes
…we can look at the Apollo scheduler, published in OSDI this year

For details I’ll refer you to the paper, but briefly: the Apollo scheduler uses estimates of task runtimes to estimate wait times for queues at each node. Those estimates are aggregated at a resource monitor, then published to job managers that schedule tasks. Job managers enqueue work on nodes with good data locality and scheduling latency, balancing those according to the job’s idiosyncratic weighting.

this is a perfect example of a tradeoff in layering. For arbitrary code on a “cluster OS”, mixing estimates of differing frameworks, quality, versions… is technically challenging and difficult to make converge (something we’re looking at in CISL). In Apollo the only jobs are SCOPE, the optimizer is known, the task granularity can be controlled, etc. this distributed technique can drive extremely high utilization across 10Kx nodes. Because SCOPE is much richer than MapReduce, it can cover more use cases

Initial task placement
Wait-time matrix
Computes expected wait time for a given size

Speculative Execution
Schedules duplicate exec given new information

Opportunistic back-filling
Distributed scheduling requires static capacity allocation
Opportunistically borrow unused resources (low-pri tasks)

11

Apollo Distributed Scheduler

Presenter Notes
Presentation Notes
This is not dissimilar in spirit to Sparrow

Anyway- drilling down a level, we see the job manager has data to pick a different execution plan based on the cluster state. Apollo also uses a priority ranking that ensures idle resources still drive job throughput, albeit with some potential preemption cost

Systems
Pro

OSS friendly (modular)
Competitive (at each level)
Agile (experimentation)

Con
Prevents vertical integration
Modularity often overstated

Systems/Database
Database
Pro

Vertical integration
Scalability
System-wide changes possible

Con
Rigid model
Trade diversity for utilization

Presenter Notes
Presentation Notes
Just to recap quickly:

I don’t think it’s accidental that the systems approach is what OSS looks like. Familiar w/ Conway’s Law? “organizations that design systems… are constrained to produce designs that are copies of the communication structures of those organizations”

Most of the companies that employ people in this space are competitors. Building a module that solves your problem and integrating it into the whole is much easier than turning the software architecture to suit your- idiosyncratic, possibly competitive- interest. The competitive landscape often shows up in APIs. By way of example, security in Hadoop is an area where companies have chosen to add value. The APIs are defined jointly, but the implementations are developed by disjoint cliques.

So we also see competition at those boundaries. If the optimizer is weak, someone is free to swap it out. If the OS doesn’t fit your deployment, you can swap it out (or change the layering, as in Myriad).

At least, in principle. The modularity of these systems is often not so clean, and “swap it out” could mean weeks or months of work by expensive experts. While it’s OSS and that cost can be shared/amortized- and we’ll discuss this next- layers are often co-designed by the same teams.

As we saw with databases, full control of the stack makes some optimizations/architectures implementable, where layering might require a more general solution that’s beyond the state-of-the-art. As in SCOPE, designers can constrain the estimation problem to apply to that deployment, where a comparable implementation on a cluster OS might require a specification language, layers of optimizers, and learned correction. Layers add complexity, sometimes needlessly.

BigData second generation

Systems Database Hybrid

Pig, Hive, Cascading, Crunch, Sawzall, FlumeJava,…
Calcite, Summingbird, Corfu, …
Tez, REEF, Twill, Chronos, Marathon, …
YARN, Mesos, Omega, Borg, Corona, …

Impala, SCOPE, Drill, Tajo, Presto, … Spark, Asterix, Flink, …

Presenter Notes
Presentation Notes
So let’s consider what we’re calling hybrids: layered systems where each level is co-designed

Hybrid
Layered, like an onion

Originally built for iterative workloads
Machine learning jobs
Cache data in reusable containers

Resilent Distributed Datasets (RDD)
Immutable, partitioned collection of objects
Partitions, dependencies, compute, [partitioner], [locality]
May have a schema (SchemaRDD/DataFrames)

DSL
Originally in Scala, has python, Java bindings
Transformations are closed over RDDs
Actions force eval of transformations to return output

Apache Spark

Presenter Notes
Presentation Notes
Apache Spark is a framework that’s become very popular, particularly in the last year. Research started in 2009, commercialized by Databricks (founded by UCBerk AMPLab)

Spark authors consider it a generalization of the MapReduce compute engine, rather than a specialization. So streaming, graph processing, machine learning, and batch computation- which have special-purpose implementations in YARN/Mesos- all run on the same engine in Spark, rather than as separate application stacks on a common cluster OS.

Spark runs on cluster OSes- including its own standalone scheduler- but the community is building every component of its stack from the user-facing APIs down through the optimizer and runtime- all the way to resources.

The Spark runtime manages Resli…DDs. Each RDD includes information about its lineage, partitioning, and optional custom partitioning and locality
Spark defines transformations of RDDs- which yield other RDDs- and
Actions on RDDs, which produce output

Example Transformation (Scala)
val inputRDD = sc.textFile("log.txt")
val errorsRDD = inputRDD.filter(lambda x: "error" in x)
val warningsRDD = inputRDD.filter(lambda x: "warning" in x)
val badLinesRDD = errorsRDD.union(warningsRDD)

inputRDD

badLinesRDD

errorsRDD warningsRDD

Presenter Notes
Presentation Notes
As a quick idea of what Spark code looks like, this example defines an RDD lineage graph for a program that’s filtering all log lines containing “error” or “warning” and defining a union. Transformations are easily composable, and the runtime can reason about how best to implement them given the partitioning, format, etc. of the underlying data.

RDDs are evaluated lazily. So none of these statements has triggered any computation, yet. Computation is triggered by actions…

Action forces evaluation of RDD
RDD not a dataset, but instructions for computing dataset
May be persisted by user request or high-level framework
Faults automatically recoverable from lineage
Operations automatically chained/combined
Partitioning encoded in framework

Example Actions
// ...
val badLinesRDD = errorsRDD.union(warningsRDD)
println("Input had " + badLines.count() + " concerning lines")
println("Here are 10 examples: ")
badLines.take(10).foreach(println)
badLines.saveAsSequenceFile("/home/cdoug/badLines")

Presenter Notes
Presentation Notes
…such as these. Given our composite RDDs, these actions force badLines to be evaluated. Given an action, Spark may request resources from the cluster, package and ship computation to containers to evaluate RDDs, recover from faults, and ship the result back to the user

Spark runtime allows users to specify which RDDs are likely to be read multiple times, an influence caching policy

On top of these primitives, high-level languages can use cost-based optimizers to determine which data should be persisted on disk, in memory, or recomputed on-demand. Frameworks implemented in Spark can share datasets within a session/application, so one can run a SQL query followed by running an algorithm from MLib (Spark’s machine learning library)

Mixing SparkSQL and MLlib
training_data_table = sql("""
 SELECT e.action, u.age, u.latitude, u.logitude
 FROM Users u
 JOIN Events e ON u.userId = e.userId""")

def featurize(u):
 LabeledPoint(u.action, [u.age, u.latitude, u.longitude])

// SQL results are RDDs so can be used directly in MLlib.
training_data = training_data_table.map(featurize)

model = new LogisticRegressionWithSGD.train(training_data)

Presenter Notes
Presentation Notes
…which looks like this. This example comes from the last Spark summit.

Unlike Pig- where the execution is laid out explicitly- or Hive where it is declarative, Spark programs tend to expose some details to the user (such as which RDDs are likely to be evaluated again) and leave some optimization to the runtime (such as lineage). Spark will automatically determine which data needs to be serialized and shipped to its evaluators to execute a UDF.

Spark’s shell is one of its principal selling points. Early demos would load the Wikipedia dataset- expensive on the first iteration- then demonstrate how sub-second queries over the cached, parsed result supported scenarios common in data science.

We don’t have time to go into details of the Spark runtime, but the core concept is the RDD. More recent versions of Spark added support for schemas in each RDD, so one can run declarative queries on partitioned RDDs. This works particularly well when backed by Parquet, a format based on the Google Dremel paper that- in contrast to the ORC format in Hive- supports nested data.

Asterix Stack

Slide courtesy of Asterix

Presenter Notes
Presentation Notes
The Asterix project is layered like the earlier “systems” approach. We’re going to focus on AsterixDB.

As you can see, while Asterix is layered and supports different levels of integration, each system is co-designed.

AsterixDB System Overview

#AsterixDB 7878Slide courtesy of Asterix

Presenter Notes
Presentation Notes
AsterixDB supports structured data it has ingested (including automatic indexing) and unstructured, external data (some indexing, but focus is its own store). Data models are defined in JSON (ADM) and interrogated by a declarative query language (AQL).

Processing cost is proportional to the task at hand, supports continuous query ingestion (rather than building an ingest from Kafka/Storm/Hive)

Scale gracefully, including automatic load shedding/feedback

Support common BD types like text, but also temporal/spatial data types (extend JSON)

AsterixDB System Overview (cont.)

#AsterixDB 7979Slide courtesy of Asterix

Presenter Notes
Presentation Notes
Each node in AsterixDB is configured to use a fixed amount of memory. At saturation (when the arrival rate exceeds its capacity), load shedding and/or throttling policies.

These are coordinated at a low level by a co-designed dataflow and storage engine

Hyracks Runtime

#AsterixDB 80

• Partitioned-parallel platform for data-intensive computing
• Job = dataflow DAG of operators and connectors

– Operators consume and produce partitions of data
– Connectors route (repartition) data between operators

• Hyracks vs. the “competition”
– Based on time-tested parallel database principles
– vs. Hadoop: More flexible model and less “pessimistic”
– vs. Dryad: Supports data as a first-class citizen

• Scale-tested on a Yahoo! Labs cluster with 180 nodes (1440
cores, 720 disks)

Slide courtesy of Asterix

Presenter Notes
Presentation Notes
Like SCOPE or Tez, Hyracks also supports DAGs and can interrogate the underlying data model.

Tez has limited support for dynamic replanning; Hyracks shares some similarities with research systems like CIEL and Naiad, in that it can make data-dependent control-flow decisions. Where Tez relies on Calcite (a CBO) for its optimizations, Algebricks is layered on top of Hyracks for logical planning. Languages on top of these…

Hyracks (cont.)

#AsterixDB 81

Algebricks

Partitioned
Parallelism!

Slide courtesy of Asterix

Presenter Notes
Presentation Notes
Can be used to interrogate the system, without having to rewrite these complex and subtle parts of the system

LSM-Based Storage & Indexes

#AsterixDB 82

In-Memory
Component

On-Disk Components

Instance of Index I Deleted-Key B+-Tree Bloom Filter

C0

C1 C2

New data

LSM-ified Indexes:
• B+ trees
• R trees (secondary)
• Inverted (secondary)

Slide courtesy of Asterix

Presenter Notes
Presentation Notes
Notably, AsterixDB also builds its own storage engine for more fine-grained control

So like the database approach, AsterixDB controls all the layers from the user-visible APIs to the storage. It’s layered like the OS/Systems approach with reusable components, but each of these is co-designed so opportunities for optimizations are not lost.

Benchmarks and Performance
“What is best in life?”

Presenter Notes
Presentation Notes
…so bottom line, what should we pursue?

Performance comparison : TPC-DS 30TB continued

Failed Spark-
SQL

queries

Presenter Notes
Presentation Notes
Hortonworks presented a convincing set of slides at this year’s O’Reilly Strata conference, mostly TPC-DS queries

Why didn’t Spark take Hive to sub-second?

● Hive is CPU bound for most operations specially after the introduction of columnar file formats (do more with less)

● Spark consumes more CPU, Disk & Network IO than Tez for relatively large datasets

● Hive on Spark spends a lot of time translating from RDDs to Hive’s “Row Containers”

2x less
Disk IO

4x less
Network

IO
6x less

CPU

Presenter Notes
Presentation Notes
Here, it explores some of the resource overheads that might be responsible…

Impala vs Spark vs Hive/Tez

Presenter Notes
Presentation Notes
Here are more graphs showing… well, that benchmarking is hard (particularly of fast-moving systems), and performance depends a lot on the workload. Every one of these systems has demonstrated some comparative advantage in performance, usability, time-to-insight, and other metrics whose weighting is entirely subjective

What’s interesting is that most of these frameworks are OSS, so improvements/lessons from one system are quickly transferred to others. While all these systems are Apache licensed, there hasn’t been any straight copying of code, but most ideas proved out in one system appear in the next.

OSS – Industry – Research
Best Frenemies Forever

Presenter Notes
Presentation Notes
Which brings us to the less technical, but more practical part of the talk. The strange relationship between competitors that collaborate on OSS projects, and how you can step through the looking glass yourself.

Layering: Yahoo porting Spark to run on YARN, MapR/Mesosphere porting YARN to run on Mesos
Influence: ORC/Parquet and Hive/Impala taking inspiration from each other; Spark drawing greater attention to low-latency and reuse, a technique used in all modern systems (REEF, Tez)

Research
Limited scope to demonstrate changes
Low cost for testing prototypes

Industry
Access to talent, tools beyond
Ability to influence ecosystem
Easy collaboration across companies

OSS
“Safe harbor”
IP protections (Apache Software Foundation)

Competition

Microsoft Cloud and Information Services Lab (CISL)
Systems Group
Apache Hadoop YARN: Yet Another Resource Negotiator (SoCC 2013)
Tango: Distributed data structures over a shared log (SOSP 2013)
Reservation-based Scheduling: If You're Late Don't Blame Us! (SoCC 2014)
Multi-resource packing for cluster schedulers (SIGCOMM 2014)
REEF: Retainable Evaluator Execution Framework (SIGMOD 2015)
WANalytics: Analytics for a Geo-Distributed Data-Intensive World (CIDR 2015)
Global analytics in the face of bandwidth and regulatory constraints (NSDI 2015)
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters (tech report)
Chris Douglas
cdoug@microsoft.com, cdouglas@apache.org, @chris_douglas

Questions?

mailto:cdoug@microsoft.com
mailto:cdouglas@apache.org

What are my options…

XXXX ffixme

90

• Ideas:
• 1) Declaratively negotiate use of resources
• 2) Leverage the exposed flexibility to plan
• 3) Dynamically adapt scheduling invariants

Teach the RM about time

• Steps:
• 1. App formulates reservation request in RDL
• 2. Request is “placed” in the Plan
• 3. Allocation is validated against sharing policy
• 4. System commits to deliver resources on time
• 5. Plan is dynamically enacted
• 6. Jobs get (reserved) resources
• 7. System adapts to live conditions
•

Teach the RM about time: Architecture

• (simplified for OSS release)

(1) Reservation Definition Language (RDL)

e.g., atom (<2GB,1core>, 1, 10,
 1min, 10bundle/min)

• GREE
• Allocate “late”, run “early”

• GREE-L
• Allocate “flat”
• Minimize preemption

(2) Greedy Agents: intuition

• Validation Policy: CapacityOverTimePolicy
• instantaneous max, running avg
• e.g., user does not exceed instantaneous 30% allocation, and
• an average of 10% in any window of 24h
•
• O(n) scanning the inventory min(alloc) – T to max(alloc) + T

•

(3) User Quotas (trade-off flexibility to
fairness)

• Coping with Misprediction (user)
• budget for them in reservation by overallocating
• continue in best-effort mode
• re-negotiate to extend reservation
• Coping with Failures (system)
• leave headroom in plan
• monitor and re-plan (move jobs)
• discard reservations (last accepted/least important)

(7) Adapting to changing conditions

• Results
• meet all production job SLAs
• lowers best-effort jobs latency
• increased cluster utilization and throughput

Comparing against Hadoop
CapacityScheduler

• Idea: explicit treatment of time in resource management
• Enables: completion SLAs, low-latency for best-effort jobs, high ROI
• End-to-end system effort: in Apache Hadoop 2.6

• Future Directions
• Hive/MR modeling (Perforator project)
• Giraph modeling (PreDICT: Adrian Popescu EPFL)
• Advanced agents for placement
• Dynamic pricing

Rayon Conclusion

Host 0 Host 1 Host 2

NodeManager NodeManager NodeManager

ResourceManager

𝐶𝐶1𝐶𝐶0

𝑚𝑚0𝑚𝑚2 𝑚𝑚1

𝑟𝑟0 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0

Client Client

Presenter Notes
Presentation Notes
A YARN deployment consists of a ResourceManager daemon responsible for issuing resources while respecting cluster invariants among tenants and a NodeManager daemon responsible for enforcing those contracts on processes running in the cluster. (click)

When an application runs in the cluster, it’s controlled by an ApplicationMaster, a framework daemon running on one of the cluster nodes that coordinates the computation. (click)

When a client submits a job, the RM does some admission control, authentication, etc. and eventually starts an AM in the cluster.

Based on its physical plan, the AM requests resources from the RM; it communicates by heartbeating about once every second. In response, it will receive leases on containers in the cluster. Here, we have a MapReduce job.

As we saw in the previous presentation, ergonomics of YARN containers are measured in memory and CPU cores.

And we can also run frameworks that have nothing to do with MapReduce, sizing each unit of work as required or efficient for that application. Applications use a declarative language to specify their resource constraints, which we’ll come back to presently

Queries
 Inline containers into the
 ApplicationMaster

Sessions
 Persistent connection to client
 Elastically allocate resources
 Retain resources across queries

Presenter Notes
Presentation Notes
Coming up from some of the details…

In this model, we have opportunities to address some longstanding shortcomings. For example, small jobs are a large fraction of the work submitted to the cluster. In YARN, the AM can often complete the job without requesting new containers, which lowers latencies for small jobs.

Similarly, after submitting an application, a client can connect to the corresponding AM and not only monitor status, but also send commands. Those can trigger container allocations that elastically expand the application’s footprint with the session. Applications can also retain containers across queries to create more interactive experiences on the grid. Spark, originally written for Mesos and ported to YARN, is an excellent example of this style.

Datacenter N

Search

Production

Query

Mail Research

ML

Sys

NodeManager NodeManager NodeManager

Re
so

ur
ce

M
an

ag
er

𝐴𝐴𝐴𝐴2

10 16 16

𝐴𝐴𝐴𝐴0 𝐶𝐶0 𝐶𝐶1

4 8 4

𝐶𝐶0𝐶𝐶1

2 2 16

𝐴𝐴𝐴𝐴1

4

Client Client

Host 0 Host 1 Host 2

ApplicationSubmissionContext
- Tokens
- Scheduling Context
- Container Context

ContainerLaunchContext
- Tokens
- Dependencies
- Environment

ResourceRequest

Cores
RAM

Presenter Notes
Presentation Notes
Here, we have our same three hosts. Instead of map/reduce slots, we’re recording RAM and CPU cores. (click)

A YARN deployment consists of a ResourceManager daemon responsible for assigning resource invariants among tenants and a NodeManager daemon responsible for enforcing those contracts on processes running in the cluster. (click)

When an application runs in the cluster, it’s controlled by an ApplicationMaster, a framework daemon running on one of the cluster nodes that coordinates the computation. (click)

When a client submits a job, she composes a message that includes tokens (security requires that we run as the tenant that submitted the job), a scheduling context used in the RM to assign resources, and a context to launch the AM (click)

A component of the RM starts the AM in the cluster, using a contract negotiated with the scheduling layer. Given its logical plan, the AM requests resources from the RM and- on obtaining a lease- starts its containers in the cluster. Note that the wireup for intra-application communication is neither facilitated nor secured by YARN; this is the responsibility of the framework. (click)

Not all applications need multiple containers. Particularly for small jobs, it’s possible to run all relevant work in a single (in this case, large) container. (click)

Moreover, the client can discover where the AM is running, and connect to it for status or to send it commands. This way, one can create sessions with an AM that can trigger requests for new containers, allowing for elastic and interactive workloads

AllocateRequest {
 ResourceRequest* {
 // Resource
 // Locality
 // Priority
 }
}

AllocateResponse {
 // Completed containers
 Container* {
 // Host
 // Resource
 // Priority
 // Token
 }
}

Ap
pl

ica
tio

nM
as

te
r

𝐽𝐽2 𝑚𝑚2{𝑚𝑚} 𝑟𝑟0{𝑟𝑟}

𝐽𝐽3 𝑚𝑚2{𝑚𝑚} 𝑟𝑟0{𝑟𝑟}

AMRM::allocate()

AMNM::startContainer()

NodeManager k

ContainerLaunchContext {
 // LocalResources (dependencies)
 // Environment
 // Command
 // Tokens (container, impersonation)
}

HDFS (WAL)

Presenter Notes
Presentation Notes
Given set of tasks to run (or having generated work), build a request to the RM and ask for resources (click)

Continue heartbeating, receive containers in response (note: also informed of completed containers)

	Blind Men and an Elephant: Perspectives on BigData
	>whoami
	>id curino
	Goals and Disclaimers
	History
	BigData in the Database World
	Web Crawl
	The origin
	Slide Number 9
	Slide Number 10
	Growth
	Data Lake
	Shortcomings of first-gen BigData
	BigData next generation
	BigData second generation
	Systems: Cluster OS
	Systems: Cluster OS
	Slide Number 18
	Slide Number 19
	YARN ResourceRequest
	Why does this matter?
	Anything else?
	Anything else?
	Mesos Architecture
	Mesos Architecture
	Mesos Architecture
	Apache Mesos
	Omega critique of Mesos
	Omega
	Omega
	Simulation Results
	Summarizing
	Systems: Libraries
	Building on the Cluster OS
	The Challenge
	The Challenge
	The Challenge
	Library Stack
	Library Stack
	Systems: Libraries
	Services in shared clusters
	Apache Twill (incubating)
	Apache REEF
	REEF
	Libraries
	Apache REEF Summary
	Slide Number 47
	Library of Inputs and Outputs
	Slide Number 49
	Slide Number 50
	Systems: libraries
	Systems: Applications
	Apache Pig
	Sample PigLatin Queries
	Example: Pig Skewed Join
	Apache Hive
	Stinger Initiative
	Hive-on-MR vs. Hive-on-Tez
	Large application ecosystem
	BigData second generation
	Database approach
	Cloudera Impala
	Cloudera Impala Architecture
	Cloudera Impala Performance
	Microsoft Scope / Apollo
	Cloud Scale Job
	Apollo Distributed Scheduler
	Slide Number 68
	Systems/Database
	BigData second generation
	Hybrid
	Apache Spark
	Example Transformation (Scala)
	Example Actions
	Mixing SparkSQL and MLlib
	Asterix Stack
	AsterixDB System Overview
	AsterixDB System Overview (cont.)
	Hyracks Runtime
	Hyracks (cont.)
	LSM-Based Storage & Indexes
	Benchmarks and Performance
	Performance comparison : TPC-DS 30TB continued

	Why didn’t Spark take Hive to sub-second?
	Impala vs Spark vs Hive/Tez
	OSS – Industry – Research
	Competition
	Questions?
	What are my options…
	Teach the RM about time
	Teach the RM about time: Architecture
	(1) Reservation Definition Language (RDL)
	(2) Greedy Agents: intuition
	(3) User Quotas (trade-off flexibility to fairness)		
	(7) Adapting to changing conditions
	Comparing against Hadoop CapacityScheduler
	Rayon Conclusion
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103

