Apache Hadoop YARN:
Yet Another Resource Negotiator

Presenters: Carlo Curino & Chris Douglas
2% Microsoft

Vinod Kumar Vavilapalli
Arun C Murthy

Sharad Agarwal
Mahadev Konar

Robert Evans

Thomas Graves

Jason Lowe

Hitesh Shah
Siddharth Seth
Bikas Saha

Owen O'Malley
Sanjay Radia
Benjamin Reed
Eric Baldeschwieler

Presenter Notes
Presentation Notes
Thank you. I’m Chris Douglas, this is Carlo Curino.

We’re two among a long list of authors on this paper about resource management for very large analytics clusters.

Apache Hadoop YARN: Yet Another Resource Negotiator

Vinod Kumar Vavilapalli”
Robert Evans”

Bikas Saha”

Mahadev Konar”
Siddharth Seth”

Benjamin Reed’

Arun C Murthy”
Thomas Graves®

Carlo Curino™ Owen O’Malley”

i

Chris Douglas Sharad Agarwal’

Jason Lowe” Hitesh Shah”

1

Sanjay Radia’
Eric Baldeschwieler”

sharea ana accessea. 1n1s proada A00pLon ana uniguous
usage has stretched the initial design well beyond its in-
tended target, exposing two key shortcomings: 1) tight
coupling of a specific programming model with the re-
source management infrastructure, forcing developers to
abuse the MapReduce programming model, and 2) cen-
tralized handling of jobs’ control flow, which resulted in
endless scalability concerns for the scheduler.

In this paper, we summarize the design, development,
and current state of deployment of the next genera-
tion of Hadoop’s compute platform: YARN. The new
architecture we introduced decouples the programming
model from the resource management infrastructure, and
delegates many scheduling functions (e.g., task fault-
tolerance) to per-application components. We provide
experimental evidence demonstrating the improvements
we made, confirm improved efficiency by reporting the
experience of running YARN on production environ-
ments (including 100% of Yahoo! grids), and confirm
the flexibility claims by discussing the porting of several

APECIC MAaudOop DCEAn as One ol maany Upl}ll-.‘iUul’Cl} iIn-
plementations of MapReduce [12], focused on tackling
the unprecedented scale required to index web crawls. Iis
execution architecture was tuned for this use case, focus-
ing on strong fault tolerance for massive, data-intensive
computations. In many large web companies and star-
tups, Hadoop clusters are the common place where op-
erational data are stored and processed.

More importantly, it became the place within an or-
ganization where engineers and researchers have instan-
taneous and almost unrestricted access to vast amounts
of computational resources and troves of company data.
This is both a cause of Hadoop’s success and also its
biggest curse, as the public of developers extended the
MapReduce programming model beyond the capabili-
ties of the cluster management substrate. A common
pattern submits “map-only” jobs to spawn arbitrary pro-
cesses in the cluster. Examples of (ab)uses include fork-
ing web servers and gang-scheduled computation of it-
erative workloads. Developers, in order to leverage the

2010

2014

2015

2016

2017

R P T P | TP PO

Presenter Notes
Presentation Notes
Even this list is too short. YARN is a community effort, and recognition by SoCC is shared by a long list of contributors. If Carlo and I mislead you during this presentation, that’s on us, but we want to emphasize the dozens, hundreds of people who shaped this technology.

So if you want to win a test of time award, work with a few hundred people.

Test of Hre Timing Award

Hadoop EHVIOe

hype/adoption

Hadoop EHVIOe

time

Google MR
SoCC Test of Time

SoCC Best Paper

Presenter Notes
Presentation Notes
Test of time, also a test of timing. You know the Gartner hype curve? It tracks enthusiasm, disillusionment, and maturity. Write the paper here, so you have a decade to deliver on promises.

Not all hype is ultimately substantiated. Sometimes trends run their course. MapReduce is still used, but it’s a “legacy framework”, and every MR job submitted to your cluster is a “legacy admission.”

So… why are we here?

Test of time, need to time two events: first, write the paper here, where Consider the Gartner “hype cycle” for technology that’s piqued the interest of industry and academia. Euphoric enthusiasm, impatience and disappointment, then a restoration of faith. This is not the reality for MapReduce. For MapReduce (and Hadoop as the byword for this style of architecture), our staid, static, scalable companion is a “legacy framework.” Every MR job submitted to your cluster is a legacy admission.

Package MapReduce as a collateralized debt obligation?

Apache Hadoop YARN Hype/Adoption Cycle

hype/adoption

YARN Adoption

: v’
airbnb ' Walmart
EIIEVTV,'L\SY% Go gle Cloud

= Mlcrosoft %"

in}
 'ORTONWORKS

I CLOUD=RA

"
t@
‘L‘ﬁ

[n=[alala]s)

Hadoop v1

- oJ)gmuJIgS!)JI
SaudlArorpco

Google MR

time

SoCC Best Paper SoCC Test of Time

Presenter Notes
Presentation Notes
Hadoop’s resource manager has not faded. YARN enabled new applications to run in analytics clusters. MR became a backstop for those new tools and technologies. Today, YARN clusters handle challenging, diverse workloads in environments that we find compelling. We’ll cover some of those in this talk.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Apache Hadoop YARN Hype/Adoption Cycle

1
L‘! ‘
.
-
:
.

hype/adoption

YARN Adoption

aWws

E?' @ y J TikTok \‘_/ -]
L L]
X, cirbnb Walmart

ha%damp
Hadoop vl

BRITISH :

AIRWAYS GC} glEC|DUd
[[| Mi .
m Microsoft g
QP@ Expedia

 VISA

sof ('i-.!) Igs_i)!ﬂ SR
Saudi Aramco

®

Google MR "mnmnwnnxs

CLOUD=RA

SoCC Best Paper SoCC Test of Time time

Presenter Notes
Presentation Notes
Because I won the coin flip, I get to explain what launched and shaped YARN. As momentum wanes and things start to get “cloudy”, Carlo will tell you about the trough of despair how YARN climbed the adoption curve.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Scaling with the Web (2000s)

> Largest, most dynamic dataset
ever assembled

I%, B Al Markup
|

> Track B Show Markup
Changes ~ Reviewing Pane

@ For Everyone

> Annotation dimensions

> Metadata expand with base data

Presenter Notes
Presentation Notes
“It all started with search. This dataset was unfathomably large and growing”

Download the internet known to you. Index it. Extract keywords and concepts, etc. to build an annotated graph for ranking. @Yahoo, “webmap”
infrastructure folks moving bytes around, this is already daunting, but it gets worse
Search is not just one copy with an index; want to know what changed. Lifting not just one copy of the internet, but several
Not just one dimension: annotate malicious, spam pages; also language
Data from the business: click logs, page telemetry, traffic from ad networks…

All of these are growing with your dataset, tracking an exponential curve, each point is growing dimensions

The scale and depth of the web was unprecedented. Integrating crawls and feeds into the webmap was barely tractable, particularly when the analysis required storing and processing multiple copies of the web to see how it’s changing. Annotations for malice, language, work-safety, crawl frequency, etc. scaled with the growing content. Data from these business- click logs, ad networks, page telemetry, etc. also became more granular per instance, as instances compounded.

Data Silos to Data Lake

Web Search Many More Workloads

Early DataLlake <gg
PN

i

2009

Presenter Notes
Presentation Notes
So: big problem. What can you use? Off-the-shelf DB/DW couldn’t solve this in the early 2000s. Anticipating large-scale analytics on consumer-grade hardware would become commodity software: Y! invested in scaling Apache Hadoop. Not just for search, but to establish its infra as an open standard. In 2007: this is where Yahoo built its webmap.
search has huge capital costs; lots of commodity servers; scaling compute+storage together
place in Y! where one could readily find capacity and data (Carlo will expand on this)

outside the grid, there would be processes and people who managed silos of data
permission to combine was often ad hoc
different req, built at different times, from acquisitions, etc.

This was the shape of Data lakes
unstructured data in open formats (ancestors of to ORC, Parquet)
organizational change
teams moved (sometimes compelled) to move to these clusters
data + capacity available, platform was open
easier to exchange + share, data + capacity
MR was the only supported engine, but not the only interface to the data
More diverse users motivated better APIs on top of MR, like Hive and Pig

YARN+HDFS = Cluster Operating System

MapReduce was not enough Decouple Resource Management from App
Rigid Programming model, YARN handles Resource Management
batch-oriented, low utilization MRv2, Spark, Scope,... are “apps” sharing a cluster

Hadoop 1.x Hadoop 2.x / YARN

User Code User Code

Hive/Pig

MapReduce
Vi

Resource
Management
(and DFS)

Hardware / VM

Presenter Notes
Presentation Notes
MapReduce was not enough. Once you have teams whose requirements don’t match search, as search becomes more sophisticated, need more than a scalable, batch system.
Data lake exposed the inadequacy of MR for general-purpose analytics
poor for: iteration (ML), interactivity (lots of coffee breaks), streaming
users, like evolution and velociraptors: finds a way
users used MR to start non-MR frameworks
resource management doesn’t understand this, it’s running a state machine that’s only vaguely related to the computation
needed another layer to support diversity of workloads we’re already running
Hardware becoming more capable, and MR arch could not support it

Problem: MR was built with the same philosophy as governed GFS/HDFS, single master, all policy + scheduling decisions centralized
one place to add policy logic, schedule + reason about the few deadlocks that remained

MapReduce to a Cluster OS (YARN)

Hadoop 1.x
JobTracker cluster status

Scheduling
Job State
Task State

Security

TaskTracker

Job Status
Job Control
Speculation

Dependencies

Security Dep. Cache

Task Sum. Res. Mon.

Hadoop 2.x / YARN
MR v2 Application Driver

YARN Resource Manager

Preemption

ﬁﬁﬁﬁﬁﬁ ...

VYT L

Presenter Notes
Presentation Notes
Let’s zoom in on these systems and be explicit about the problem we’re solving: splitting MR into application and platform layers

enumerate the features and invariants the existing system supports
detn where and how the new system maintains those invariants

Going to move capabilities from the old architecture to the new one

Central JT makes decisions, TT enforces them
assuming MR
job, task state machines: clearly application
job status: report from the driver, b/c different frameworks will export different metadata
some subtlety; designer needs to choose: generalize dependencies between tasks, or move that to applications?
Another easy one: enforce resource assignments, cache dependencies, same security model; drop MR-specific aggregation
easy cases: resource assignment? Clearly YARN
Interesting case: security, b/c driver reporting status has user credentials and runs in the cluster
JT could rely on Kerberos + servlets, need apps to authenticate
YARN supplies sufficient conditions, app responsible for using those facilities

now you’ve reconfigured the existing system; what else can you do?
Preemption

Hadoop MapReduce follows the same centralized pattern motivating GFS/HDFS i.e., central policy, infreq. rarely-retracted decisions

YARN Preemption: Why

OS Scheduling: bin packing over time
Workload changes affect allocations
Preemption to evict process from resources
Fallow resources to absorb changes

Cluster scheduling: dynamic bin packing
(Temporarily) Failures cause reconfiguration
Killing tasks loses progress

% Complete

100

90

80

70

60

50

40

30

20

10

—Seriesl —Series2

HHHHHHHHHHHHHHHHHHHHHHHH
mmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmm
HHHHHHHHHHHH

Presenter Notes
Presentation Notes
Critical to the design of any resource manager: how to rebalance when the workload shifts
preemption can reclaim
“natural” exits and fallow resources can absorb change

didn’t just lose a rack of resources, may need to restart what was running there

if a task is killed, it loses all the work it had done
if it’s given some notice, then it can checkpoint its progress and continue later

run about 30% faster; monotonic progress

Jumped straight into preemption w/o motivating

scheduling is bin packing in time, start to get bin-packing

because I separated concerns, I was able to do new stuff
preemption: why is it important? why couldn’t you do it with MapReduce?
motivate why I picked this

Heterogeneous workload: choosing what to preempt is framework-specific
costs/dependencies opaque to YARN
some containers may be harder to recover
With a driver process, have an agent for YARN to negotiate with
Previous architecture: can’t think too hard about preemption across the cluster
YARN provides a specification of rsrc to preempt + list of containers it will kill if ignored

run about 30% faster, lose progress, takes more time

YARN Preemption: How

Diverse applications
Dependencies, costs opaque to RM

Announce need for resource revocation
Symmetric protocol for requests
Specific nodes, filter expression

Apps select satisfying set of resources

System-enforced for non-cooperating apps

New capability in YARN

YARN
ResourceManager

PreemptionResourceRequest

<2GB, 2 core>

NodeManager (N)

Agent to negotiate
Capacity for application logic

Presenter Notes
Presentation Notes
What to make of that observation? How do we implement this in YARN?
Heterogeneous workload: choosing what to preempt is framework-specific
costs/dependencies opaque to YARN
some containers may be harder to recover, more desirable: app-specific
Consider this example, where Containers 43 and 44 are running shards of a stateful service on two nodes, container 122 is one of many tasks querying it
the Driver communicates w/ YARN to request resources and obtain exit status, other data on containers
RM can send a request back (same format as request) to recover resources the App is using
YARN gives App has a choice: satisfy this filter, or these containers will be killed
App instructs 43 to save its state (e.g., to HDFS) and exit; kills container 122 to avoid killing 44

With a driver process, have an agent for YARN to negotiate with
Previous architecture: can’t think too hard about preemption across the cluster
YARN provides a specification of rsrc to preempt + list of containers it will kill if ignored

YARN @m: Container Utilization (two weeks ago)

Very Diverse Workload Preemption -> High Utilization
Multiple frameworks Many queues (per organization/user)
Spark has most resources 80-90% container utilization
MR has most containers Clusters of 7-10k nodes

0
(=]

©
(=)

city Utilization (%)
~l
(=]

Absolute Used Capa
B o1 o

(il IMIAEAN] 1 Ll IR Ul
10/25 00:00 10/25 12:00 10/26 00:00 10/26 12:00 10/27 00:00 1

Screenshots courtesy of: Varun Saxena (LinkedIn)

Presenter Notes
Presentation Notes
can aggressively move resources from one org to another, can assign them more freely, not worry about leaving fallow capacity for new workloads

LinkedIn runs w/ preemption, 80-90% average utilization

locality + network critical?
framework rigitdity + users breaking its assumptions (indep. slide?)

Quote from Hamming on the necessity of an “impossible” task to show the relevance of a new tech?

> It is first necessary to prove beyond any doubt the new thing, device,
> method, or whatever it is, can cope with heroic tasks before it can get
> into the system to do the more routine, and, in the long run, more useful
> tasks.

Second System: Lessons Learned

Existing system is your fiercest competitor
Share its defaults to share its strength
Same >> Improved: until you’re deployed

Software is easier to change than people
Change harms adoption
Start structural, not functional

Presenter Notes
Presentation Notes
If you’re really, really lucky- not just working with dozens of people on exciting tech- but you’re given an opportunity to write a second system. Lots of negative examples and cautionary tales (YARN has some of its own), but it’s a lot of fun, particularly in hindsight. Some more positive advice:

Existing system is your fiercest competitor, because defaults are stronger at decision points
changing shared infra often requires consensus among stakeholders
until the new system is deployed, keep these decisions boring
security audit: on local nodes, YARN is almost indistinguishable from MR
choices open design discussions, design discussions kill projects
they do this by short-circuiting prioritization, because “if you’re changing it anyway…”
when you build on the defaults of the existing system, its inertia becomes your strength

Software is easier to change than people. Again: where there’s a decision, that is a barrier.
more true of a second system than a new product, because you know which features/capabilities in the system were difficult to deliver
Architecture is not only a philosophical choice, reflecting designers’ opinion
also tactical: operators, users, organizations don’t need to be consulted on the defaults
YARN has the same primary/backup head node as MR, same abstractions, even if the implementation is different
constraints can sharpen your design
goal is to bring others with you

If you can keep this discipline, then you can build some of the cool stuff you dream up on your second system, because it’ll actually get deployed.

Reimplement features with the same invariants
Existing code documents exception paths

Existing system is a template
documents the exception paths: this is how people will test your system
exception paths for small, test deployments will form their first impressions
clone configuration knobs (or provide rewrites) if they’re still meaningful
follow refactoring advice: reconfigure to make the change easy, then make the easy change

security audits: on local nodes, YARN is almost indistinguishable from MR
YARN has the same primary/backup head node as MR
MR + YARN: jobs are submitted to hierarchical queues that proportionally share capacity
pay for 20% of the cluster, get 20% of the capacity
changing this would require orgs to renegotiate how they share capacity
admins to reverse-engineer existing queues to restore invariants
users trained to submit to queues need to learn something new
workflow systems, monitoring systems, etc. need to be rethought, not just ported

Existing code documents exception paths: find them ALL, these will be the cases people use to audit whether you’ve done your homework
particularly edge cases in small-scale tests
EXAMPLES EXAMPLES EXAMPLES

-
innovate from the inside? analogy b/c same >> improved people will be annoyed at

The first system was successful enough to justify a sequel.

As designers, you know what your users expect, but also which changes require approvals
new product vs second system: you KNOW what’s going to be hard; use that unfair advantage
your old system is your fiercest competitor, but its strengths are its defaults
match the defaults that avoid reevaluation
For example, in MR + YARN: jobs are submitted to hierarchical queues that proportionally share capacity
pay for 20% of the cluster, get 20% of the capacity
changing this would require orgs to renegotiate how they share capacity, admins to reverse-engineer existing queues to restore invariants, users trained to submit to queues need to learn something new
workflow systems, monitoring systems, etc. need to be rethought, not just ported
Central scheduler not only a philosophical choice, reflecting designers’ opinion on resource management
also tactical: operators, users, organizations don’t need to be consulted on the defaults

Refactoring + reimplementing
Scheduler in YARN, job control + sched logic: all new, but same configuration variables
Process model and security: identical to MR1
again, want the audit to be familiar: “this is the same” >> “this is better”

Refactor; don’t build from scratch
evolve, lets you know what needs to survive
refactor, cut, isolate
leave behavior unchanged, defaults are the same
then make the one change you want to make

Once you’ve done all this, then you can start doing some exciting things that Carlo is going to tell you about

INTRODUCE FIGURE

As designers, you know what your users expect, but also which changes require non-tech approval.
You can change software, but you can’t change people: identify constituencies
unch: subsystems that, if changed, would require non-technical renegotiation
scheduler: change how
systems you need to change to make the structural change easy
structural changes

Central scheduler not just philosophical, also tactical
keep new systems in mind, but generalize known, familiar system
Giraph/Spark, also Hive/Pig in Tez

Apache Hadoop YARN Hype/Adoption Cycle

1
L‘! ‘
.
-
:
.

hype/adoption

YARN Adoption

aWws

E?' @ y J TikTok \‘_/ -]
L L]
X, cirbnb Walmart

ha%damp
Hadoop vl

BRITISH :

AIRWAYS GC} glEC|DUd
[[| Mi .
m Microsoft g
QP@ Expedia

 VISA

sof ('i-.!) Igs_i)!ﬂ SR
Saudi Aramco

®

Google MR "mnmnwnnxs

CLOUD=RA

SoCC Best Paper SoCC Test of Time time

Presenter Notes
Presentation Notes
YARN was merged into the project, starts to get hardened and deployed, and the paper is published.

So as we cresting the hype curve and everything is totally fine: I’ll hand this to Carlo to describe the next phase of this journey

Do your recruiting on this side of the hype curve. It feels like you have lightning in a bottle and the world is trying to pry it out of your fingers, but that’s when you should be finding people to share it with.

On the other side: there might be fewer people watching, but as you’ll see, the work is rewarding and the company is good.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

My Vantage Point..

Carlo at CSAIL MIT (2009):
Stonebraker: “[MapReduce] is
a giant step backward.”

DBs are the best, SQL is the
way!

Carlo at Yahoo experience (2011): Carlo at Microsoft (hindsight 2020):
Need to process some logs, two options: Through OSS and careful API design.
a) Use MySQL: Weeks of red-tape We canhave it all (scale, efficiency,

b) Learn Hadoop: Thousands of servers flexibility)!
with data preloaded

Make your sandbox open(-source)
The "Datalake” experience is and friendly. Academics and other
Exhilarating! companies will come!

hype/adoption

Apache Hadoop YARN Hype/Adoption Cycle

Spark took
over compute

K8s took over
service deployment

Hadoop was dead...

SoCC SoCC time
Best Paper Test of Time

Apache Hadoop YARN Hype/Adoption Cycle

hype/adoption

YARN Adoptior%

aWS
TikTok \.._/‘7

airbnb ' Walmart

Eu'ﬁ%%% Google Cloud
M'cmSOﬂ ‘Expedla
@Y VISA ,

= dpgouwli gSolyl
Saudi Aramco

Hadoop v1

Google MR CLOUD=RA

SoCC Best Paper SoCC Test of Time time

Presenter Notes
Presentation Notes
Hadoop’s resource manager has not faded. YARN enabled new applications to run in analytics clusters. MR became a backstop for new tools. Today, YARN clusters handle challenging, diverse workloads in environments that we find compelling. We’ll cover some of those in this talk.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Why YARN adoption among Hyperscalers?

MapReduce YARN YARN Federation YARN Federation +
(<10qgps, 2k nodes) (~500qps, 8k nodes) (~10kqps, >50k nodes) Distributed Scheduling

(~100kgps, >50k nodes)

Scale and High Utilization

Many of the largest/busiest BigData clusters are YARN-based
How? We progressively “removed” responsibilities from central components

Presenter Notes
Presentation Notes
large, efficient; not mixed w/ serving
underselling the challenge of displacing Cosmos clusters? SQL there (2011 Carlo would be thrilled), but in 2015 Carlo saw it differently
note: lesson on migration? YARN not only MR -> YARN, also Cosmos -> YARN

BigData at @® Microsoft

100% 350000 .~
g YARN roll-out 300000 & User: ~15k
£ 50% £
< 250000 Queue: >5k
% 6% 200000 S
§ 40% 150000 Job: 600k / day
- 100000 2 A
2 _m s £ | Task: 5 Billions / day
0% .- 0
% % % B % % B % B B %y B Cluster: >50K nodes

Data: >10Exabyte

Figure 5: CPU utilization over the yearsin Cosmos.

— 15000 . P 200000

:E 11250 YARN roll-out £ 600000 YARN roll-out

E 7500 E 400000

E 3750 E 200000

E 0 = 0

E TJE{:, t}q?‘; Tﬁgf‘;}eﬂe} JG.-’ T}'::IJ_TT:Q{F%}J r}gﬂftp Tb{;, c’%{?r’% Hﬂfﬂr}% s Haq" 3 Hﬂfﬂye%?gﬂq?&gﬂfﬁeﬂu’ ;r}%&ga{pe%@g%f

(p) Data size before compression/replication. (c) Number of batch SCOPE jobs run per day.

* Pictures from “The Cosmos Big Data Platform at Microsoft: Over a Decade of Progress and a Decade to Look Forward”

http://vldb.org/pvldb/vol14/p3148-jindal.pdf

Why not partitioning to smaller clusters?

Individual very-large jobs (~16k servers)
Usability/Fragmentation advantages

Datalake Effect (visualized):

Nodes represent 2k queues
Edges represent “data sharing”

YARN Federation™

lllusion of single-cluster
Proxy all interactions with the system

Centrally define capacity policies

Routers/RM/AMRMProxy choreograph
enforcement

AMRMProxy/RM coordinate to handle
“placement” decisions

Proxy
cZ {
DI

 (S

4a

3b

State

Store

StateStore

RM

ooodo
ooooo
o
oooon
oo
Oo0ooano

4b|

sub-cluster1

sub-cluster 2

7b

* Hydra: a federated resource manager for data-center scale analytics, NSDI 2019

Presenter Notes
Presentation Notes
Routers and ARRM proxies (just proxies?)

https://www.usenix.org/conference/nsdi19/presentation/curino
https://www.usenix.org/conference/nsdi19/presentation/curino
https://www.usenix.org/conference/nsdi19/presentation/curino

YARN Distributed Scheduling™

1.0

Challenge ity P S ——
Scheduling rates at 50k nodes with short tasks ~ oe. o /0]
Heartbeat latencies waste resources (~10sec ~ “osfo /) s T —
from free-to-used resources) L e

0 | | 1 L]
101 10° 10? 102 103 10* 10° 10°
Runtime (sec)

Key idea: Distributed Scheduling
Introduce Opportunistic Containers
Per-node LocalRM makes scheduling decisions

Resource
Manager

8
a2
52
g
2

allocate(...) request(QUEUEABLE, ...)
OC queue at NM and are locally preempted o S

Node Node
Manager Manager

Manager

Quotas/Queue priorities/Rebalancing 7y

start(QUEUEABLE, ...)

* Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters, ATC 2015

Presenter Notes
Presentation Notes
Contrast w/ LinkedIn?

https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos

YARN @ == Microsoft: (federation+OppCont)

Scheduling Decisions / Sec

Scheduling Pressure: 30000

~40k qps average 25000
>100k gps at peak 10000 \"/\/\/\I\J"\/\'\/W/\AAV’/\/\
~50k queued OPP

15000

10000 \,J‘V\W./u\/\/\

5000

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
+++++++++++++++++++++++++++++
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

O VW WYWWYWWwWOVYw ™ VWY VO VYWV LWYUWYWOWY YL Yvww v o

HHHHHHHHHHHHHHHHHHHHHHHHHHH

—GUAR allocation —OPP allocation —API qps

Screenshots courtesy of Cosmos Team (Microsoft)

Why is YARN used for small-scale OnPrem/Cloud?

Battle-tested/non-differentiating functionalities

Scalable Scheduler, fault tolerance, library management,
rolling-upgrades, load balancing, log aggregation, metrics
gathering, node health, job cleanup, ...

Cluster-OS + OSS APIs

OSS APIs targeted by most “new” frameworks
Customizable deployments

Apps Per Week

YARN @ RY:lil:J-X4: Example of Customization

Availability at 99.999%!! Diverse set of workloads
I 2% VXV eI % [(] [om

| Hue ‘ 1
10,000,000 e
‘YARN‘ I CS ‘ ‘ MR l ’ Tez ’Spark’ ‘Storm‘
7,500,000 Compute
5,000,000 g_ ‘ HDFS ‘ I HBase ‘ ‘ HCat | ‘ Kafka ‘
>
Storage / Msg.
& [z |
Tools
7/1/20 1/1/21 71721 1/1/22 71122 . [] Apache / Open Source Projects [E2:24 Yahoo Projects

YAHOO!
Date

Diverse HW (node-labels)

Network Backplane

CPU Servers
with JBODs

T |

Screenshots courtesy of: Eric Badger (Yahoo!)

Conclusions

Origin Story:
Web-Index > BigData =2 Datalake =2 YARN

YARN Adoption:
Scalable/High Utilization Cluster OS
OSS APls and Sturdy Core Features

Next Decade:

New powerful trends towards Cloud and SaaS =2 ?

Presenter Notes
Presentation Notes
diverse workloads, but less diversity in languages and frameworks

THANK YOU

Authors

Presenters

Carlo Curino
Chris Douglas

Vinod Kumar Vavilapalli
Arun C Murthy
Chris Douglas
Sharad Agarwal
Mahadev Konar
Robert Evans
Thomas Graves
Jason Lowe

Hitesh Shah
Siddharth Seth
Bikas Saha

Carlo Curino
Owen O'Malley
Sanjay Radia
Benjamin Reed
Eric Baldeschwieler

Hadoop PMC

Akira Ajisaka

Arun C Murthy

Anu Engineer
Amareshwari Sriramadasu
Arpit Agarwal

Arun Suresh

Aaron T. Myers
Ayush Saxena

Bikas Saha

Billie Rinaldi

Bibin A Chundatt
Robert(Bobby) Evans
Brahma Reddy Battula
Brandon Li

Carlo Curino

Chris Douglas

Chen Liang

Colin Patrick McCabe
Chris Nauroth

Doug Cutting

Daryn Sharp

Devaraj Das

Devaraj K

Dhruba Borthakur
Eric Badger

Eli Collins

Enis Soztutar

Eric Payne
Giridharan Kesavan
Haibo Chen

Hairong Kuang

He Xiaogiao

Hitesh Shah

{igo Goiri

Masatake Iwasaki
Jonathan Eagles
Jakob Homan
Jonathan Hung

Jian He

Jing Zhao

Jitendra Nath Pandey
Jason Lowe

John Zhuge

Junping Du

Karthik Kambatla
Kihwal Lee
Konstantinos Karanasos
Lei Xu

Mingliang Liu

Lokesh Jain

Luke Lu

Mahadev Konar
Matt Foley

Ming Ma

Mukul Kumar Singh
Naganarasimha G R
Nanda kumar

Nigel Daley

Owen O'Malley
Tsuyoshi Ozawa
Patrick Hunt

Raghu Angadi

Ray Chiang

Robert Kanter
Rohith Sharma K S
Sharad Agarwal
Konstantin Shvachko
Sammi Chen

Sandy Ryza
Shashikant Banerjee
Sangjin Lee

Szilard Nemeth
Sanjay Radia
Siddharth Seth
Michael Stack

Steve Loughran
Subru Krishnan
Sunil Govindan
Surendra Singh Lilhore
Suresh Srinivas

Tsz Wo (Nicholas) Sze
Takanobu Asanuma
Daniel Templeton
Thomas Graves
Todd Lipcon

Tom White
Alejandro Abdelnur
Uma Maheswara Rao G
Varun Saxena
Vinayakumar B
Vinod Kumar Vavilapalli
Varun Vasudev
Hemanth Yamijala
Andrew Wang
Wangda Tan

Haohui Mai

Weiwei Yang

Xuan Gong

Xiao Chen

Xiaoyu Yao

Yongjun Zhang

Yi Liu

Yiqun Lin

Yufei Gu

Zhe Zhang

Zhijie Shen

Zheng Shao
Zhankun Tang

Akira Ajisaka
Andrzej Bialecki
Abhishek Modi

Arun C Murthy
Anubhav Dhoot

Anu Engineer

Ajay Kumar
Amareshwari Sriramadasu
Amar Ramesh Kamat
Arpit Agarwal

Arpit Gupta

Arun Suresh

Aaron T. Myers
Aravindan Vijayan
Allen Wittenauer
Ayush Saxena

Benoy Antony
Bharat Viswanadham
Bibin A Chundatt
Bikas Saha

Billie Rinaldi
Robert(Bobby) Evans
Boris Shkolnik
Botong Huang
Brahma Reddy Battula
Brandon Li

Benjamin Teke

Sean Busbey

Chris Douglas

Chen Liang

Colin Patrick McCabe
Chris Nauroth
Konstantin Boudnik
Chandni Singh

Chris Trezzo

Carlo Curino

Doug Cutting

Daryn Sharp

Devaraj Das

Devaraj K

Dhruba Borthakur
Dinesh Chitlangia
David Mollitor

Kai Zheng

Eric Badger

Marton Elek

Eli Collins

Eric Payne

Enis Soztutar

Eric Yang

Hui Fei

Gabor Bota
Gautham Banasandra

Gera Shegalov
Giovanni Matteo Fumarola
Giridharan Kesavan
Lilu

Hemanth Boyina
Hitesh Shah

Haibo Chen
Hairong Kuang
Hanisha Koneru
Harsh J

He Xiaogiao

ffigo Goiri

Ivan Mitic
Masatake Iwasaki
Jim Brennan
Jonathan Eagles
Jakob Homan
Jonathan Hung
Jian He

Jing Zhao

Jitendra Nath Pandey
Jason Lowe

Johan Oskarsson
Junping Du

John Zhuge

Karthik Kambatla
Kihwal Lee
Konstantinos Karanasos
Koji Noguchi

Kan Zhang

Lei Xu

Li Cheng

Mingliang Liu

Xun Liu

Lokesh Jain

Lohit Vijayarenu
Luke Lu

Larry McCay

Sean Mackrory
Mahadev Konar
Manoj Govindassamy
Matei Zaharia
Matthew Foley
Mayank Bansal
Dmytro Molkov
Mukund Madhugiri
Ming Ma

Mukul Kumar Singh
Naganarasimha G R
Nanda kumar

Nigel Daley

Nathan Roberts

Hadoop Committers

Owen O'Malley
Tsuyoshi Ozawa
Prabhu Joseph

Andras Gyori

Rakesh Radhakrishnan
Raghu Angadi

Ramya Sunil

Ravi Prakash

Ray Chiang

Robert Kanter

Rohith Sharma K'S
Roman Shaposhnik
Sammi Chen

Scott Chun-Yang Chen
Sharad Agarwal
Konstantin Shvachko
Sandy Ryza
Shashikant Banerjee
Siyao Meng

Sangjin Lee

Sanjay Radia
Sreekanth Ramakrishnan
Sidharta Seethana
Szilard Nemeth
Siddharth Seth

Steve Loughran

Subru Krishnan

Chao Sun

Sunil Govindan
Surendra Singh Lilhore
Suresh Srinivas
Siddharth Wagle
Miklos Szegedi

Tsz Wo (Nicholas) Sze
Tanping Wang

Tao Yang

Takanobu Asanuma
Christophe Taton
Daniel Templeton
Thomas Graves

Todd Lipcon

Tao Li

Tom White

Alejandro Abdelnur
Uma Maheswara Rao G
Varun Saxena
Vinayakumar B

Vinod Kumar Vavilapalli

Vivek Ratnavel Subramanian

Vrushali Channapattan
Varun Vasudev
Walter Su

Andrew Wang

Wangda Tan
Wei-Chiu Chuang
Wei Yan
Haohui Mai
Wilfred Spiegelenburg
Weiwei Yang
Xuan Gong
Xiao Chen

Erik Krogen
Xiaoyu Yao
Yufei Gu
Yongjun Zhang
Yi Liu

Yiqun Lin
Zenggiang Xu
Zac Zhou

Qi Zhu

Zhe Zhang
Zhijie Shen
Zheng Shao
Zhankun Tang
Zhihai Xu

YARN @m: Container Utilization (two weeks ago)

Cluster statistics
- 80-90% container utilization
- Average 20 containers per node (peak ~70)
- 31K nodes in clusters of 7-10.5K nodes
- Recent, annual growth of 38% GB/Hr
- Peak 1.1k containers allocated per second

Workload statistics

- Up to 1.1k container allocations per second
- Majority rsrc usage: Spark

- Majority of containers: MapReduce

Screenshots courtesy of: Varun Saxena (LinkedIn)

Presenter Notes
Presentation Notes
can aggressively move resources from one org to another, can assign them more freely, not worry about leaving fallow capacity for new workloads

LinkedIn runs w/ preemption, 80-90% average utilization
- want to provide some interesting workload data

locality + network critical?
framework rigitdity + users breaking its assumptions (indep. slide?)

Quote from Hamming on the necessity of an “impossible” task to show the relevance of a new tech?

> It is first necessary to prove beyond any doubt the new thing, device,
> method, or whatever it is, can cope with heroic tasks before it can get
> into the system to do the more routine, and, in the long run, more useful
> tasks.

	Apache Hadoop YARN:� Yet Another Resource Negotiator
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Scaling with the Web (2000s)
	Data Silos to Data Lake
	YARN+HDFS  Cluster Operating System
	MapReduce to a Cluster OS (YARN)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Second System: Lessons Learned
	Slide Number 14
	My Vantage Point..
	Slide Number 16
	Slide Number 17
	Why YARN adoption among Hyperscalers?
	BigData at
	Why not partitioning to smaller clusters?
	YARN Federation*
	YARN Distributed Scheduling*
	YARN @ (federation+OppCont)
	Why is YARN used for small-scale OnPrem/Cloud?
	YARN @ : Example of Customization
	Conclusions
	THANK YOU
	Slide Number 28

