
Presenters: Carlo Curino & Chris Douglas
Vinod Kumar Vavilapalli
Arun C Murthy
Sharad Agarwal
Mahadev Konar
Robert Evans
Thomas Graves
Jason Lowe

Hitesh Shah
Siddharth Seth
Bikas Saha
Owen O’Malley
Sanjay Radia
Benjamin Reed
Eric Baldeschwieler

Presenter Notes
Presentation Notes
Thank you. I’m Chris Douglas, this is Carlo Curino.

We’re two among a long list of authors on this paper about resource management for very large analytics clusters.

Presenter Notes
Presentation Notes
Even this list is too short. YARN is a community effort, and recognition by SoCC is shared by a long list of contributors. If Carlo and I mislead you during this presentation, that’s on us, but we want to emphasize the dozens, hundreds of people who shaped this technology.

So if you want to win a test of time award, work with a few hundred people.

Google MR

time

hy
pe

/a
do

pt
io

n

Hadoop Hype

SoCC Best Paper SoCC Test of Time

Hadoop Hype

Presenter Notes
Presentation Notes
Test of time, also a test of timing. You know the Gartner hype curve? It tracks enthusiasm, disillusionment, and maturity. Write the paper here, so you have a decade to deliver on promises.

Not all hype is ultimately substantiated. Sometimes trends run their course. MapReduce is still used, but it’s a “legacy framework”, and every MR job submitted to your cluster is a “legacy admission.”

So… why are we here?

Test of time, need to time two events: first, write the paper here, where Consider the Gartner “hype cycle” for technology that’s piqued the interest of industry and academia. Euphoric enthusiasm, impatience and disappointment, then a restoration of faith. This is not the reality for MapReduce. For MapReduce (and Hadoop as the byword for this style of architecture), our staid, static, scalable companion is a “legacy framework.” Every MR job submitted to your cluster is a legacy admission.

Package MapReduce as a collateralized debt obligation?

SoCC Best Paper

Google MR

Hadoop v1

Hadoop
2.0/YARN

time

hy
pe

/a
do

pt
io

n

YARN Adoption

SoCC Test of Time

Presenter Notes
Presentation Notes
Hadoop’s resource manager has not faded. YARN enabled new applications to run in analytics clusters. MR became a backstop for those new tools and technologies. Today, YARN clusters handle challenging, diverse workloads in environments that we find compelling. We’ll cover some of those in this talk.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

SoCC Best Paper

Google MR

Hadoop v1

time

hy
pe

/a
do

pt
io

n

YARN Adoption

SoCC Test of Time

Hadoop
2.0/YARN

Presenter Notes
Presentation Notes
Because I won the coin flip, I get to explain what launched and shaped YARN. As momentum wanes and things start to get “cloudy”, Carlo will tell you about the trough of despair how YARN climbed the adoption curve.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Largest, most dynamic dataset
ever assembled

Metadata expand with base data

Annotation dimensions

Presenter Notes
Presentation Notes
“It all started with search. This dataset was unfathomably large and growing”

Download the internet known to you. Index it. Extract keywords and concepts, etc. to build an annotated graph for ranking. @Yahoo, “webmap”
infrastructure folks moving bytes around, this is already daunting, but it gets worse
Search is not just one copy with an index; want to know what changed. Lifting not just one copy of the internet, but several
Not just one dimension: annotate malicious, spam pages; also language
Data from the business: click logs, page telemetry, traffic from ad networks…

All of these are growing with your dataset, tracking an exponential curve, each point is growing dimensions

The scale and depth of the web was unprecedented. Integrating crawls and feeds into the webmap was barely tractable, particularly when the analysis required storing and processing multiple copies of the web to see how it’s changing. Annotations for malice, language, work-safety, crawl frequency, etc. scaled with the growing content. Data from these business- click logs, ad networks, page telemetry, etc. also became more granular per instance, as instances compounded.

Web Search

Data Warehouse

Many More Workloads

2005

MapReduce

HDFS

2007

Early DataLake

MapReduce
HDFS

Hive/Pig

2009

Presenter Notes
Presentation Notes
So: big problem. What can you use? Off-the-shelf DB/DW couldn’t solve this in the early 2000s. Anticipating large-scale analytics on consumer-grade hardware would become commodity software: Y! invested in scaling Apache Hadoop. Not just for search, but to establish its infra as an open standard. In 2007: this is where Yahoo built its webmap.
search has huge capital costs; lots of commodity servers; scaling compute+storage together
place in Y! where one could readily find capacity and data (Carlo will expand on this)

outside the grid, there would be processes and people who managed silos of data
permission to combine was often ad hoc
different req, built at different times, from acquisitions, etc.

This was the shape of Data lakes
unstructured data in open formats (ancestors of to ORC, Parquet)
organizational change
teams moved (sometimes compelled) to move to these clusters
data + capacity available, platform was open
easier to exchange + share, data + capacity
MR was the only supported engine, but not the only interface to the data
More diverse users motivated better APIs on top of MR, like Hive and Pig

Rigid Programming model,
batch-oriented, low utilization

YARN handles Resource Management
MRv2, Spark, Scope,… are “apps” sharing a cluster

MapReduce
V1

YARN

MR
V2

Presenter Notes
Presentation Notes
MapReduce was not enough. Once you have teams whose requirements don’t match search, as search becomes more sophisticated, need more than a scalable, batch system.
Data lake exposed the inadequacy of MR for general-purpose analytics
poor for: iteration (ML), interactivity (lots of coffee breaks), streaming
users, like evolution and velociraptors: finds a way
users used MR to start non-MR frameworks
resource management doesn’t understand this, it’s running a state machine that’s only vaguely related to the computation
needed another layer to support diversity of workloads we’re already running
Hardware becoming more capable, and MR arch could not support it

Problem: MR was built with the same philosophy as governed GFS/HDFS, single master, all policy + scheduling decisions centralized
one place to add policy logic, schedule + reason about the few deadlocks that remained

TaskTracker

JobTracker

NodeManager

MR v2 Application Driver

YARN Resource Manager

… …

Other
Apps…

Security Dep. Cache

Task Sum. Res. Mon.

Security Dep. Cache

Task Sum. Res. Mon.

Scheduling

Job State

Task State

Security

Speculation

Dependencies

Job Control

Job Status

Cluster Status

Security

Scheduling

Job State

Task State Speculation

Dependencies

Job Control

Job Status

Cluster Status

SecuritySecurity

Preemption

Presenter Notes
Presentation Notes
Let’s zoom in on these systems and be explicit about the problem we’re solving: splitting MR into application and platform layers

enumerate the features and invariants the existing system supports
detn where and how the new system maintains those invariants

Going to move capabilities from the old architecture to the new one

Central JT makes decisions, TT enforces them
assuming MR
job, task state machines: clearly application
job status: report from the driver, b/c different frameworks will export different metadata
some subtlety; designer needs to choose: generalize dependencies between tasks, or move that to applications?
Another easy one: enforce resource assignments, cache dependencies, same security model; drop MR-specific aggregation
easy cases: resource assignment? Clearly YARN
Interesting case: security, b/c driver reporting status has user credentials and runs in the cluster
JT could rely on Kerberos + servlets, need apps to authenticate
YARN supplies sufficient conditions, app responsible for using those facilities

now you’ve reconfigured the existing system; what else can you do?
Preemption

Hadoop MapReduce follows the same centralized pattern motivating GFS/HDFS i.e., central policy, infreq. rarely-retracted decisions

Workload changes affect allocations
Preemption to evict process from resources
Fallow resources to absorb changes

(Temporarily) Failures cause reconfiguration
Killing tasks loses progress 0

10

20

30

40

50

60

70

80

90

100

1 64 12
7

19
0

25
3

31
6

37
9

44
2

50
5

56
8

63
1

69
4

75
7

82
0

88
3

94
6

10
09

10
72

11
35

11
98

12
61

13
24

13
87

14
50

15
13

15
76

16
39

17
02

%
 C

om
pl

et
e

Time (s)

Series1 Series2

Presenter Notes
Presentation Notes
Critical to the design of any resource manager: how to rebalance when the workload shifts
preemption can reclaim
“natural” exits and fallow resources can absorb change

didn’t just lose a rack of resources, may need to restart what was running there

if a task is killed, it loses all the work it had done
if it’s given some notice, then it can checkpoint its progress and continue later

run about 30% faster; monotonic progress

Jumped straight into preemption w/o motivating

scheduling is bin packing in time, start to get bin-packing

because I separated concerns, I was able to do new stuff
preemption: why is it important? why couldn’t you do it with MapReduce?
motivate why I picked this

Heterogeneous workload: choosing what to preempt is framework-specific
costs/dependencies opaque to YARN
some containers may be harder to recover
With a driver process, have an agent for YARN to negotiate with
Previous architecture: can’t think too hard about preemption across the cluster
YARN provides a specification of rsrc to preempt + list of containers it will kill if ignored

run about 30% faster, lose progress, takes more time

Dependencies, costs opaque to RM

Symmetric protocol for requests
Specific nodes, filter expression

System-enforced for non-cooperating apps

NodeManager (N15)

YARN
ResourceManager

App
Driver

NodeManager (N128)

C43 C122C44 …Agent to negotiate
Capacity for application logic

C43 C44 C83
… C122

N128 2
N133 3

<2GB, 2 core>

* 20
...
...

PreemptionResourceRequest

Presenter Notes
Presentation Notes
What to make of that observation? How do we implement this in YARN?
Heterogeneous workload: choosing what to preempt is framework-specific
costs/dependencies opaque to YARN
some containers may be harder to recover, more desirable: app-specific
Consider this example, where Containers 43 and 44 are running shards of a stateful service on two nodes, container 122 is one of many tasks querying it
the Driver communicates w/ YARN to request resources and obtain exit status, other data on containers
RM can send a request back (same format as request) to recover resources the App is using
YARN gives App has a choice: satisfy this filter, or these containers will be killed
App instructs 43 to save its state (e.g., to HDFS) and exit; kills container 122 to avoid killing 44

With a driver process, have an agent for YARN to negotiate with
Previous architecture: can’t think too hard about preemption across the cluster
YARN provides a specification of rsrc to preempt + list of containers it will kill if ignored

Screenshots courtesy of: Varun Saxena (LinkedIn)

 Multiple frameworks
 Spark has most resources
 MR has most containers

 Many queues (per organization/user)
 80-90% container utilization
 Clusters of 7-10k nodes

Presenter Notes
Presentation Notes
can aggressively move resources from one org to another, can assign them more freely, not worry about leaving fallow capacity for new workloads

LinkedIn runs w/ preemption, 80-90% average utilization

locality + network critical?
framework rigitdity + users breaking its assumptions (indep. slide?)

Quote from Hamming on the necessity of an “impossible” task to show the relevance of a new tech?

> It is first necessary to prove beyond any doubt the new thing, device,
> method, or whatever it is, can cope with heroic tasks before it can get
> into the system to do the more routine, and, in the long run, more useful
> tasks.

Share its defaults to share its strength
Same >> Improved: until you’re deployed

Change harms adoption
Start structural, not functional

Presenter Notes
Presentation Notes
If you’re really, really lucky- not just working with dozens of people on exciting tech- but you’re given an opportunity to write a second system. Lots of negative examples and cautionary tales (YARN has some of its own), but it’s a lot of fun, particularly in hindsight. Some more positive advice:

Existing system is your fiercest competitor, because defaults are stronger at decision points
changing shared infra often requires consensus among stakeholders
until the new system is deployed, keep these decisions boring
security audit: on local nodes, YARN is almost indistinguishable from MR
choices open design discussions, design discussions kill projects
they do this by short-circuiting prioritization, because “if you’re changing it anyway…”
when you build on the defaults of the existing system, its inertia becomes your strength

Software is easier to change than people. Again: where there’s a decision, that is a barrier.
more true of a second system than a new product, because you know which features/capabilities in the system were difficult to deliver
Architecture is not only a philosophical choice, reflecting designers’ opinion
also tactical: operators, users, organizations don’t need to be consulted on the defaults
YARN has the same primary/backup head node as MR, same abstractions, even if the implementation is different
constraints can sharpen your design
goal is to bring others with you

If you can keep this discipline, then you can build some of the cool stuff you dream up on your second system, because it’ll actually get deployed.

Reimplement features with the same invariants
Existing code documents exception paths

Existing system is a template
documents the exception paths: this is how people will test your system
exception paths for small, test deployments will form their first impressions
clone configuration knobs (or provide rewrites) if they’re still meaningful
follow refactoring advice: reconfigure to make the change easy, then make the easy change

security audits: on local nodes, YARN is almost indistinguishable from MR
YARN has the same primary/backup head node as MR
MR + YARN: jobs are submitted to hierarchical queues that proportionally share capacity
pay for 20% of the cluster, get 20% of the capacity
changing this would require orgs to renegotiate how they share capacity
admins to reverse-engineer existing queues to restore invariants
users trained to submit to queues need to learn something new
workflow systems, monitoring systems, etc. need to be rethought, not just ported

Existing code documents exception paths: find them ALL, these will be the cases people use to audit whether you’ve done your homework
particularly edge cases in small-scale tests
EXAMPLES EXAMPLES EXAMPLES

-
innovate from the inside? analogy b/c same >> improved people will be annoyed at

The first system was successful enough to justify a sequel.

As designers, you know what your users expect, but also which changes require approvals
new product vs second system: you KNOW what’s going to be hard; use that unfair advantage
your old system is your fiercest competitor, but its strengths are its defaults
match the defaults that avoid reevaluation
For example, in MR + YARN: jobs are submitted to hierarchical queues that proportionally share capacity
pay for 20% of the cluster, get 20% of the capacity
changing this would require orgs to renegotiate how they share capacity, admins to reverse-engineer existing queues to restore invariants, users trained to submit to queues need to learn something new
workflow systems, monitoring systems, etc. need to be rethought, not just ported
Central scheduler not only a philosophical choice, reflecting designers’ opinion on resource management
also tactical: operators, users, organizations don’t need to be consulted on the defaults

Refactoring + reimplementing
Scheduler in YARN, job control + sched logic: all new, but same configuration variables
Process model and security: identical to MR1
again, want the audit to be familiar: “this is the same” >> “this is better”

Refactor; don’t build from scratch
evolve, lets you know what needs to survive
refactor, cut, isolate
leave behavior unchanged, defaults are the same
then make the one change you want to make

Once you’ve done all this, then you can start doing some exciting things that Carlo is going to tell you about

INTRODUCE FIGURE

As designers, you know what your users expect, but also which changes require non-tech approval.
You can change software, but you can’t change people: identify constituencies
unch: subsystems that, if changed, would require non-technical renegotiation
scheduler: change how
systems you need to change to make the structural change easy
structural changes

Central scheduler not just philosophical, also tactical
keep new systems in mind, but generalize known, familiar system
Giraph/Spark, also Hive/Pig in Tez

SoCC Best Paper

Google MR

Hadoop v1

time

hy
pe

/a
do

pt
io

n

YARN Adoption

SoCC Test of Time

Hadoop
2.0/YARN

Presenter Notes
Presentation Notes
YARN was merged into the project, starts to get hardened and deployed, and the paper is published.

So as we cresting the hype curve and everything is totally fine: I’ll hand this to Carlo to describe the next phase of this journey

Do your recruiting on this side of the hype curve. It feels like you have lightning in a bottle and the world is trying to pry it out of your fingers, but that’s when you should be finding people to share it with.

On the other side: there might be fewer people watching, but as you’ll see, the work is rewarding and the company is good.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Need to process some logs, two options:
 a) Use MySQL: Weeks of red-tape
 b) Learn Hadoop: Thousands of servers
with data preloaded

The ”DataLake” experience is
Exhilarating!

Stonebraker: “[MapReduce] is
a giant step backward.”

DBs are the best, SQL is the
way!

Through OSS and careful API design.
We can have it all (scale, efficiency,
flexibility)!

Make your sandbox open(-source)
and friendly. Academics and other
companies will come!

SoCC
Best Paper

time

hy
pe

/a
do

pt
io

n

SoCC
Test of Time

Spark took
over compute

Hadoop was dead…

K8s took over
service deployment

SoCC Best Paper

Google MR

Hadoop v1

Hadoop
2.0/YARN

time

hy
pe

/a
do

pt
io

n

SoCC Test of Time

YARN Adoption

Presenter Notes
Presentation Notes
Hadoop’s resource manager has not faded. YARN enabled new applications to run in analytics clusters. MR became a backstop for new tools. Today, YARN clusters handle challenging, diverse workloads in environments that we find compelling. We’ll cover some of those in this talk.

https://www.bing.com/ck/a?!&&p=cd415ea61f411fe7JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4Nw&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1OU0ElMjBMb2dvJkZPUk09SVFGUkJBJmlkPTJGQzExOTI1MUUwQUI1RjQ1RTdFNjZGQzUzRTNDNjNDOUYzRDFFOEE&ntb=1
https://www.bing.com/ck/a?!&&p=a592f8f65f5bd525JmltdHM9MTY2Nzk1MjAwMCZpZ3VpZD0yOGM4ZDhkYi1jOTg3LTY4YzYtMzg4OS1jOTI1Yzg1YTY5YTYmaW5zaWQ9NTU4MQ&ptn=3&hsh=3&fclid=28c8d8db-c987-68c6-3889-c925c85a69a6&u=a1L2ltYWdlcy9zZWFyY2g_cT1UaWtUb2slMjBMb2dvJkZPUk09SVFGUkJBJmlkPTRDREJEODVEQjJFN0I0OTA5NjUxQzNFRjIwQTE5MzUyOThEQjE5MjA&ntb=1

Many of the largest/busiest BigData clusters are YARN-based
How? We progressively “removed” responsibilities from central components

MapReduce
(<10qps, 2k nodes)

YARN
(~500qps, 8k nodes)

YARN Federation
(~10kqps, >50k nodes)

YARN Federation +
Distributed Scheduling
(~100kqps, >50k nodes)

1 2 3

Presenter Notes
Presentation Notes
large, efficient; not mixed w/ serving
underselling the challenge of displacing Cosmos clusters? SQL there (2011 Carlo would be thrilled), but in 2015 Carlo saw it differently
note: lesson on migration? YARN not only MR -> YARN, also Cosmos -> YARN

YARN roll-out

* Pictures from “The Cosmos Big Data Platform at Microsoft: Over a Decade of Progress and a Decade to Look Forward”

User: ~15k
Queue: >5k
Job: 600k / day
Task: 5 Billions / day
Cluster: >50K nodes
Data: >10Exabyte

YARN roll-out YARN roll-out

http://vldb.org/pvldb/vol14/p3148-jindal.pdf

 Nodes represent 2k queues
 Edges represent “data sharing”

 Proxy all interactions with the system
 Centrally define capacity policies
 Routers/RM/AMRMProxy choreograph
 enforcement
 AMRMProxy/RM coordinate to handle
 “placement” decisions

* Hydra: a federated resource manager for data-center scale analytics, NSDI 2019

Presenter Notes
Presentation Notes
Routers and ARRM proxies (just proxies?)

https://www.usenix.org/conference/nsdi19/presentation/curino
https://www.usenix.org/conference/nsdi19/presentation/curino
https://www.usenix.org/conference/nsdi19/presentation/curino

Scheduling rates at 50k nodes with short tasks
Heartbeat latencies waste resources (~10sec
from free-to-used resources)

* Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters, ATC 2015

Introduce Opportunistic Containers
Per-node LocalRM makes scheduling decisions
OC queue at NM and are locally preempted
Quotas/Queue priorities/Rebalancing

Presenter Notes
Presentation Notes
Contrast w/ LinkedIn?

https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos

~40k qps average
>100k qps at peak
~50k queued OPP

Screenshots courtesy of Cosmos Team (Microsoft)

 Scalable Scheduler, fault tolerance, library management,
 rolling-upgrades, load balancing, log aggregation, metrics
 gathering, node health, job cleanup, …

 OSS APIs targeted by most “new” frameworks
 Customizable deployments

Screenshots courtesy of: Eric Badger (Yahoo!)

 Web-Index BigData  DataLake  YARN

 Scalable/High Utilization Cluster OS
 OSS APIs and Sturdy Core Features

 New powerful trends towards Cloud and SaaS  ?

Presenter Notes
Presentation Notes
diverse workloads, but less diversity in languages and frameworks

Vinod Kumar Vavilapalli
Arun C Murthy
Chris Douglas
Sharad Agarwal
Mahadev Konar
Robert Evans
Thomas Graves
Jason Lowe
Hitesh Shah
Siddharth Seth
Bikas Saha
Carlo Curino
Owen O’Malley
Sanjay Radia
Benjamin Reed
Eric Baldeschwieler

Carlo Curino
Chris Douglas

Akira Ajisaka
Andrzej Bialecki
Abhishek Modi
Arun C Murthy
Anubhav Dhoot
Anu Engineer
Ajay Kumar
Amareshwari Sriramadasu
Amar Ramesh Kamat
Arpit Agarwal
Arpit Gupta
Arun Suresh
Aaron T. Myers
Aravindan Vijayan
Allen Wittenauer
Ayush Saxena
Benoy Antony
Bharat Viswanadham
Bibin A Chundatt
Bikas Saha
Billie Rinaldi
Robert(Bobby) Evans
Boris Shkolnik
Botong Huang
Brahma Reddy Battula
Brandon Li
Benjamin Teke
Sean Busbey
Chris Douglas
Chen Liang
Colin Patrick McCabe
Chris Nauroth
Konstantin Boudnik
Chandni Singh
Chris Trezzo
Carlo Curino
Doug Cutting
Daryn Sharp
Devaraj Das
Devaraj K
Dhruba Borthakur
Dinesh Chitlangia
David Mollitor
Kai Zheng
Eric Badger
Márton Elek
Eli Collins
Eric Payne
Enis Soztutar
Eric Yang
Hui Fei
Gabor Bota
Gautham Banasandra

Gera Shegalov
Giovanni Matteo Fumarola
Giridharan Kesavan
Li Lu
Hemanth Boyina
Hitesh Shah
Haibo Chen
Hairong Kuang
Hanisha Koneru
Harsh J
He Xiaoqiao
Íñigo Goiri
Ivan Mitic
Masatake Iwasaki
Jim Brennan
Jonathan Eagles
Jakob Homan
Jonathan Hung
Jian He
Jing Zhao
Jitendra Nath Pandey
Jason Lowe
Johan Oskarsson
Junping Du
John Zhuge
Karthik Kambatla
Kihwal Lee
Konstantinos Karanasos
Koji Noguchi
Kan Zhang
Lei Xu
Li Cheng
Mingliang Liu
Xun Liu
Lokesh Jain
Lohit Vijayarenu
Luke Lu
Larry McCay

Sean Mackrory
Mahadev Konar
Manoj Govindassamy
Matei Zaharia
Matthew Foley
Mayank Bansal
Dmytro Molkov
Mukund Madhugiri
Ming Ma
Mukul Kumar Singh
Naganarasimha G R
Nanda kumar
Nigel Daley
Nathan Roberts

Akira Ajisaka
Arun C Murthy
Anu Engineer
Amareshwari Sriramadasu
Arpit Agarwal
Arun Suresh
Aaron T. Myers
Ayush Saxena
Bikas Saha
Billie Rinaldi
Bibin A Chundatt
Robert(Bobby) Evans
Brahma Reddy Battula
Brandon Li
Carlo Curino
Chris Douglas
Chen Liang
Colin Patrick McCabe
Chris Nauroth
Doug Cutting
Daryn Sharp
Devaraj Das
Devaraj K
Dhruba Borthakur
Eric Badger
Eli Collins
Enis Soztutar
Eric Payne
Giridharan Kesavan
Haibo Chen
Hairong Kuang
He Xiaoqiao
Hitesh Shah
Íñigo Goiri
Masatake Iwasaki
Jonathan Eagles
Jakob Homan
Jonathan Hung
Jian He
Jing Zhao
Jitendra Nath Pandey
Jason Lowe
John Zhuge
Junping Du
Karthik Kambatla
Kihwal Lee
Konstantinos Karanasos
Lei Xu
Mingliang Liu
Lokesh Jain
Luke Lu
Mahadev Konar
Matt Foley
Ming Ma

Mukul Kumar Singh
Naganarasimha G R
Nanda kumar
Nigel Daley
Owen O'Malley
Tsuyoshi Ozawa
Patrick Hunt
Raghu Angadi
Ray Chiang
Robert Kanter
Rohith Sharma K S
Sharad Agarwal
Konstantin Shvachko
Sammi Chen
Sandy Ryza
Shashikant Banerjee
Sangjin Lee
Szilard Nemeth
Sanjay Radia
Siddharth Seth
Michael Stack
Steve Loughran
Subru Krishnan
Sunil Govindan
Surendra Singh Lilhore
Suresh Srinivas
Tsz Wo (Nicholas) Sze
Takanobu Asanuma
Daniel Templeton
Thomas Graves
Todd Lipcon
Tom White
Alejandro Abdelnur
Uma Maheswara Rao G
Varun Saxena
Vinayakumar B
Vinod Kumar Vavilapalli
Varun Vasudev
Hemanth Yamijala
Andrew Wang
Wangda Tan
Haohui Mai
Weiwei Yang
Xuan Gong
Xiao Chen
Xiaoyu Yao
Yongjun Zhang
Yi Liu
Yiqun Lin
Yufei Gu
Zhe Zhang
Zhijie Shen
Zheng Shao
Zhankun Tang

Owen O'Malley
Tsuyoshi Ozawa
Prabhu Joseph
Andras Gyori
Rakesh Radhakrishnan
Raghu Angadi
Ramya Sunil
Ravi Prakash
Ray Chiang
Robert Kanter
Rohith Sharma K S
Roman Shaposhnik
Sammi Chen
Scott Chun-Yang Chen
Sharad Agarwal
Konstantin Shvachko
Sandy Ryza
Shashikant Banerjee
Siyao Meng
Sangjin Lee
Sanjay Radia
Sreekanth Ramakrishnan
Sidharta Seethana
Szilard Nemeth
Siddharth Seth
Steve Loughran
Subru Krishnan
Chao Sun
Sunil Govindan
Surendra Singh Lilhore
Suresh Srinivas
Siddharth Wagle
Miklos Szegedi
Tsz Wo (Nicholas) Sze
Tanping Wang
Tao Yang
Takanobu Asanuma
Christophe Taton
Daniel Templeton
Thomas Graves
Todd Lipcon
Tao Li
Tom White
Alejandro Abdelnur
Uma Maheswara Rao G
Varun Saxena
Vinayakumar B
Vinod Kumar Vavilapalli
Vivek Ratnavel Subramanian
Vrushali Channapattan
Varun Vasudev
Walter Su
Andrew Wang

Wangda Tan
Wei-Chiu Chuang
Wei Yan
Haohui Mai
Wilfred Spiegelenburg
Weiwei Yang
Xuan Gong
Xiao Chen
Erik Krogen
Xiaoyu Yao
Yufei Gu
Yongjun Zhang
Yi Liu
Yiqun Lin
Zengqiang Xu
Zac Zhou
Qi Zhu
Zhe Zhang
Zhijie Shen
Zheng Shao
Zhankun Tang
Zhihai Xu

Screenshots courtesy of: Varun Saxena (LinkedIn)

Cluster statistics
- 80-90% container utilization
- Average 20 containers per node (peak ~70)
- 31K nodes in clusters of 7-10.5K nodes

- Recent, annual growth of 38% GB/Hr
- Peak 1.1k containers allocated per second

Workload statistics
- Up to 1.1k container allocations per second
- Majority rsrc usage: Spark
- Majority of containers: MapReduce

Presenter Notes
Presentation Notes
can aggressively move resources from one org to another, can assign them more freely, not worry about leaving fallow capacity for new workloads

LinkedIn runs w/ preemption, 80-90% average utilization
- want to provide some interesting workload data

locality + network critical?
framework rigitdity + users breaking its assumptions (indep. slide?)

Quote from Hamming on the necessity of an “impossible” task to show the relevance of a new tech?

> It is first necessary to prove beyond any doubt the new thing, device,
> method, or whatever it is, can cope with heroic tasks before it can get
> into the system to do the more routine, and, in the long run, more useful
> tasks.

	Apache Hadoop YARN:� Yet Another Resource Negotiator
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Scaling with the Web (2000s)
	Data Silos to Data Lake
	YARN+HDFS  Cluster Operating System
	MapReduce to a Cluster OS (YARN)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Second System: Lessons Learned
	Slide Number 14
	My Vantage Point..
	Slide Number 16
	Slide Number 17
	Why YARN adoption among Hyperscalers?
	BigData at
	Why not partitioning to smaller clusters?
	YARN Federation*
	YARN Distributed Scheduling*
	YARN @ (federation+OppCont)
	Why is YARN used for small-scale OnPrem/Cloud?
	YARN @ : Example of Customization
	Conclusions
	THANK YOU
	Slide Number 28

