
Consistency in Motion
Chris Douglas
UC Berkeley

Abstract
All techniques for concurrency control establish an effective
execution order for transactions. Invariants that guarantee
consistency rely on this execution order, either implicitly by
construction (the locked point in 2PL, deterministic locking
in Calvin [7]), or explicitly by assigning transaction times-
tamps [2]. Scheduling workloads that mix short and long-
running transactions has been a consistent challenge for data
management, as each reordering of running transactions dis-
cards completed work. Variance in query runtimes caused by
mixing short and long-running transactions motivates either
partitioned or hybrid systems that explicitly separate these
workloads, admitting anomalies by running transactions at
lower isolation levels.

Executing long-running queries as materialized viewsmay
improve throughput by allowing concurrent transactions to
be reordered. We believe this can be implemented without
radical changes to query execution, by embedding streaming
incremental computation into existing concurrency control
techniques.
Views are defined by queries, raising the question: how

does the execution of a query, particularly a long-running
query, differ from the maintenance of a materialized view?
The overhead of creating and maintaining a view can be
significantly higher than executing a query in isolation, so
any benefit to workload throughput or makespan must come
from improved concurrency. For incremental view mainte-
nance (IVM), this is a constraint: while view maintenance
can be deferred [5], any enumeration of a view must remain
consistent with the transaction ordering generated by up-
dates. In contrast, a running query need only be ordered and
consistently enumerable when it commits.
Further, any query may reference a view, so IVM must

be fully general and available in ways that running queries
are not. For example, the query’s intermediate state is not
visible to other queries. Deferred maintenance does not block
other queries’ progress. Unlike materialized views, queries
can restart without affecting concurrent transactions. Most
importantly, permutations of per-object histories among run-
ning transactions can effect the transaction order, rather than
binding a view to an established transaction order.
To consume the stream of conflicting changes to a long-

running query, we adopt DBSP [3]. DBSP compiles relational
queries— including aggregation and recursion— to a dataflow
that consumes changes to the base tables and eagerly emits
changes to the view. For brevity, we note only that DBSP sup-
ports commutative groups. For relational algebra, DBSP uses
Z-sets to model the effects of adding, removing, and updat-
ing tuples from relations, similar to the derivation-counting
approaches for view maintenance and view adaptation [4].
The circuit itself maintains only the state necessary to emit

changes to the view, but the “integral” of its output material-
izes the view or in this case, the query result.

1 Example: 2PL and IVM
In the following, we sketch how one could graft incremental
computation to traditional 2PL. Consider a long-running, se-
rializable query 𝑇𝛾 holding long read and write locks. Trans-
actions writing into conflicting ranges must wait until the
query releases its lock, even when the update does not af-
fect the output of 𝑇𝛾 . This irrelevant update problem is well
known in IVM literature, and a sub-case of views that are self-
maintainable with respect to an update 1. When 𝑇𝛾 reaches
its locked point owning all the locks it will ever own, its seri-
alization order is determined [2], but if these locks could be
made porous then conflicting transactions could precede 𝑇𝛾
by merging writes into the running query— maintaining the
view— consistent with a serializable execution.

In the lock table, instead of acquiring a shared lock, 𝑇𝛾
acquires an incremental shared lock on tuples in its read set,
connected to the incremental query 𝑄Δ

𝛾 obtained by incre-
mentalizing 𝑄𝛾 with DBSP. A short-running transaction 𝑇1
writing into an locked range would normally be ordered after
𝑇𝛾 , but if its write is absorbed by 𝑄Δ

𝛾 , then 𝑇1 can be ordered
before 𝑇𝛾 without aborting and restarting either transaction.
Incremental shared locks can only be shared among transac-
tions that support incremental updates, and a write succeeds
only if all incremental queries absorb the write.

Admitting a write also affects write locks held by 𝑇𝛾 as 𝑇1
should read the value before𝑇𝛾 obtained the lock; this avoids
circular information flow (G1c [1]). Correct ordering of read-
write dependencies entails a corresponding incremental write
lock that maintains an anchor value, with deltas ordering
one or more active, incremental transactions.
Note that 𝑇𝛾 taking a dependency on 𝑇1 does not entail

a cascading abort of 𝑇𝛾 if 𝑇1 aborts. To undo the effect on
the incremental query, adding the inverse element— which
must exist, as Z-sets form a commutative group— to the
incremental query should remove the effect of 𝑇1 from the
integral of 𝑄Δ

𝛾 . This capability can be used to reorder and
speculate on the effects of transactions without restart.

As we locate the handle for the incremental query in the
lock table, writes are proposed to incremental queries and
may be refused, gracefully degrading to a standard lock. An
incremental query could accept only irrelevant updates, re-
ject updates as it converges, or accept updates until a thresh-
old/deadline. Refusing a write may cascade into removing
the effects of the transaction from other incremental queries
to ensure a consistent ordering. A write not unanimously
accepted by incremental shared locks could be rejected and
its effects undone, or ordered among incremental queries.

1i.e., can update the view using only the change and the view contents
without referring to the base data



2024 HPTS, 20th International Workshop on High Performance Transaction Systems (HPTS), Douglas


	Abstract
	1 Example: 2PL and IVM

